Advertisement

Journal of Electronic Materials

, Volume 47, Issue 11, pp 6641–6648 | Cite as

X-ray Diffraction Residual Stress Measurement at Room Temperature and 77 K in a Microelectronic Multi-layered Single-Crystal Structure Used for Infrared Detection

  • A.-L. LebaudyEmail author
  • R. Pesci
  • M. Fendler
Article
  • 67 Downloads

Abstract

The electronic assembly considered in this study is an infrared (IR) detector consisting of different layers, including (111) CdHgTe and (100) silicon single crystals. The processing steps and the low working temperature (77 K) induce thermomechanical stresses that can affect the reliability of the thin and brittle CdHgTe detection circuit and lead to failure. These residual stresses have been quantified in both CdHgTe and silicon circuits at room temperature (293 K) and cryogenic temperature using x-ray diffraction. A specific experimental device has been developed for 77 K measurements and a method developed for single-crystal analysis has been adapted to such structures using a laboratory four-circle diffractometer. This paper describes the methodology to obtain the deformed lattice parameter and compute the strain/stress tensors. Whereas the stresses in the CdHgTe layer appear to be negative at room temperature (compressive values), cryogenic measurements show a tensile biaxial stress state of about 30 MPa and highlight the great impact of low temperature on the mechanical properties.

Keywords

Semiconductor compounds x-ray diffraction cryogenic temperature residual stresses thermomechanical processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by the region of Lorraine in France in collaboration with CEA (Commissariat à l’Energie Atomique).

References

  1. 1.
    I.C. Noyan, T.C. Huang, and B.R. York, Crit. Rev. Solid State Mater. Sci. 20, 125 (1995).CrossRefGoogle Scholar
  2. 2.
    T.T. Lam, C.D. Moore, and R.L. Forrest, J. Elecron. Mater. 29, 804 (2000).CrossRefGoogle Scholar
  3. 3.
    P. Ballet, X. Baudry, and B. Polge, J. Electron. Mater. 42, 3133 (2013).CrossRefGoogle Scholar
  4. 4.
    Q.Q. Yao and J.J. Qu, J. Electron. Packag. 121, 196 (1999).CrossRefGoogle Scholar
  5. 5.
    X. Cheng, C. Liu, and V.V. Silberschmidt, Comput. Mater. Sci. 52, 274 (2012).CrossRefGoogle Scholar
  6. 6.
    W. Kpobie, N. Bonfoh, C. Dreistadt, M. Fendler and P. Lipinski, in EuroSimE (2013), pp. 1–6.Google Scholar
  7. 7.
    T.S. Imura, S. Weissmann, and J. Slade, Acta Cryst. 15, 786 (1962).CrossRefGoogle Scholar
  8. 8.
    B. Ortner, Adv. X-ray Anal. 29, 113–118 (1986).Google Scholar
  9. 9.
    B. Kaouache, S. Berveiller, K. Inal, A. Eberhardt, and E. Patoor, Mater. Sci. Eng. 378A, 232 (2004).CrossRefGoogle Scholar
  10. 10.
    A. Morancais, M. Fevre, M. Francois, N. Guel, S. Kruch, P. Kanoute, and A. Longuet, J. Appl. Cryst. 48, 1761 (2015).CrossRefGoogle Scholar
  11. 11.
    P. Castelein, F. Marion, J.-L. Martin, J. Baylet, N. Moussy, O. Gravrand, A. Durand, J.-P. Chamonal, and G. Destefanis, in Proceedings SPIE (2003), pp. 5251–5259.Google Scholar
  12. 12.
    H.J. McSkimin and D.G. Thomas, J. Appl. Phys. 33, 56–59 (1962).CrossRefGoogle Scholar
  13. 13.
    R.D. Greenough and S.B. Palmer, J. Phys. D 6, 587–592 (1973).CrossRefGoogle Scholar
  14. 14.
    J.J. Hall and S.B. Palmer, Phys. Rev. 161, 756–761 (1967).CrossRefGoogle Scholar
  15. 15.
    C.A. Swenson, J. Phys. Chem. Ref. Data 12, 179 (1983).CrossRefGoogle Scholar
  16. 16.
    P. Capper, Properties of Narrow Gap Cadmium-Based Compounds (London: INSPEC, the Institution of Electrical Engineers, 1994).Google Scholar
  17. 17.
    A. Declémy and P.O. Renault, Phys. Status Solidi A 204, 1041 (2007).CrossRefGoogle Scholar
  18. 18.
    P. Ballet, A. Jonchère, B. Amstatt, X. Baudry, B. Polge, D. Brellier, and P. Gergaud, J. Cryst. Growth 371, 130–133 (2013).CrossRefGoogle Scholar
  19. 19.
    X. Chen, F. Dong, K. He, J. Wang, and Q. Zhang, Proceedings SPIE 8419 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.ENSAM-Arts et Métiers ParisTech, LEM3 UMR CNRS 7239Metz Cedex 3France
  2. 2.CEATECHMetzFrance

Personalised recommendations