Advertisement

Journal of Electronic Materials

, Volume 47, Issue 10, pp 5680–5690 | Cite as

Shockley–Read–Hall Lifetime Study and Implication in HgCdTe Photodiodes for IR Detection

  • O. Gravrand
  • J. Rothman
  • B. Delacourt
  • F. Boulard
  • C. Lobre
  • Ph. Ballet
  • J. L. Santailler
  • C. Cervera
  • D. Brellier
  • N. Péré-Laperne
  • V. Destefanis
  • A. Kerlain
U.S. Workshop on Physics and Chemistry of II-VI Materials 2017
  • 32 Downloads
Part of the following topical collections:
  1. U.S. Workshop on the Physics and Chemistry of II-VI Materials 2017

Abstract

The Shockley–Read–Hall (SRH) mechanism might be a limiting factor of an infrared (IR) photodiode's dark current. This limitation is twofold. SRH generation might occur in the depletion region of the photodiode. In that case, the corresponding current is usually limiting the low-temperature dark current. Moreover, SRH generation might also occur in the diffusion volume, close to the space charge region, resulting in an increase of the diffusion dark current, usually limiting the high-temperature behavior of the photodiode. Hence, the determination of the SRH lifetime of IR materials is of first importance and has to be measured (or at least estimated) to define upcoming trends in future high-performance IR detectors. During the last few years, a lot of papers have been published about SRH lifetime in III–V materials (InSb, superlattices, InAsSb) and a few other communications have been more focused on comparing different material systems including III–V and II–VI materials. Those latter communications proposed very long SRH lifetimes (longer than ms) for HgCdTe, instead of the classical 10–100 μs usually admitted until now. This paper aims at investigating this SRH lifetime in HgCdTe based on experimental measurements carried out at the Laboratoire d’électronique des technologies de l’information (LETI) on HgCdTe grown in-house. Direct lifetime measurement (photoconductive or photoluminescence decay) as well as indirect estimations from photodiode dark currents are discussed in order to clarify this question of SRH lifetime and its consequences in upcoming advanced IR detection structures. In the end, it appeared that except for p/n extrinsic heterojunctions (for which the narrow gap depleted volume is not well known), most of the devices tested seemed limited by SRH lifetimes in the 10–100-μs range.

Keywords

HgCdTe SRH minority carrier lifetime high operating temperature IR detection full depletion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. DeBorniol, and P. Chorier, J. Electron. Mater. 38, 1733 (2009).  https://doi.org/10.1007/s11664-009-0795-2.CrossRefGoogle Scholar
  2. 2.
    A. Rogalski, Infrared Detectors, 2nd ed. (Boca Raton: Taylor & Francis, 2011).Google Scholar
  3. 3.
    D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, and M. Zandian, J. Electron. Mater. 45, 4587 (2016).  https://doi.org/10.1007/s11664-016-4566-6.CrossRefGoogle Scholar
  4. 4.
    B. Delacourt, P. Ballet, F. Boulard, A. Ferron, L. Bonnefond, T. Pellerin, A. Kerlain, V. Destefanis, and J. Rothman, J. Electron. Mater. 46, 6817 (2017).  https://doi.org/10.1007/s11664-017-5728-x.CrossRefGoogle Scholar
  5. 5.
    G.L. Hansen and J.L. Schmit, J. Appl. Phys. 54, 1639 (1983).  https://doi.org/10.1063/1.332153.CrossRefGoogle Scholar
  6. 6.
    G. Finger, R. Dorn, S. Eschbaumer, D. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, Proc SPIE (2008).  https://doi.org/10.1117/12.787971.Google Scholar
  7. 7.
    O. Gravrand, L. Mollard, O. Boulade, V. Moreau, E. Sanson, and G. Destefanis, J. Electron. Mater. 41, 2686 (2012).  https://doi.org/10.1007/s11664-012-2181-8.CrossRefGoogle Scholar
  8. 8.
    C. Cervera, O. Boulade, O. Gravrand, C. Lobre, F. Guellec, E. Sanson, and P. Castelein, J. Electron. Mater. 46, 6142 (2017).  https://doi.org/10.1007/s11664-016-4936-0.CrossRefGoogle Scholar
  9. 9.
    R.E. Dewames, Proc SPIE 9819, 1 (2016).  https://doi.org/10.1117/12.2230550.Google Scholar
  10. 10.
    D. Ives, G. Finger, R. Dorn, S. Eschbaumer, L. Mehrgan, and M. Meyer, Proc SPIE 7742, 1S (2010).  https://doi.org/10.1117/12.858063.Google Scholar
  11. 11.
    N. Baier, C. Cervera, O. Gravrand, L. Mollard, C. Lobre, G. Destefanis, and V. Moreau, J. Electron. Mater. 44, 3144 (2015).  https://doi.org/10.1007/s11664-015-3851-0.CrossRefGoogle Scholar
  12. 12.
    O. Gravrand, J. Rothman, C. Cervera, N. Baier, C. Lobre, J.P. Zanatta, and B. Fieque, J. Electron. Mater. 45, 4532 (2016).  https://doi.org/10.1007/s11664-016-4516-3.CrossRefGoogle Scholar
  13. 13.
    C. Mcmurtry, C.A. Chen, R.T. Demers, W.J. Forrest, A.K. Mainzer, J.L. Pipher, and N. York, Opt. Eng. 52, 091804 (2013).  https://doi.org/10.1117/1.oe.52.9.091804.CrossRefGoogle Scholar
  14. 14.
    L. Mollard, G. Destefanis, N. Baier, J. Rothman, P. Ballet, J.P. Zanatta, and P. Fougères, J. Electron. Mater. 38, 1805 (2009).  https://doi.org/10.1007/s11664-009-0829-9.CrossRefGoogle Scholar
  15. 15.
    M. Vallone, M. Mandurrino, M. Goano, F. Bertazzi, G. Ghione, W. Schirmacher, and H. Figgemeier, J. Electron. Mater. 44, 3056 (2015).  https://doi.org/10.1007/s11664-015-3767-8.CrossRefGoogle Scholar
  16. 16.
    M. Kinch, J. Electron. Mater. 39, 1043 (2010).  https://doi.org/10.1007/s11664-010-1087-6.CrossRefGoogle Scholar
  17. 17.
    M. Kinch, Fondamentals of Infrared Detector Materials, SPIE PRESS, Tutorial Texts in Optical Engineering Volume TT76 (2007).  https://doi.org/10.1117/3.741688.
  18. 18.
    M. Kinch, F. Aqariden, D. Chandra, P. Liao, H.F. Schaake, H.D. Shih, and S. Read, J. Electron. Mater. 34, 880 (2005).  https://doi.org/10.1007/s11664-005-0036-2.CrossRefGoogle Scholar
  19. 19.
    A.R. Beattie and P.T. Landsberg, Proc. R. Soc. A 249, 16 (1959).  https://doi.org/10.1098/rspa.1959.0003.CrossRefGoogle Scholar
  20. 20.
    S. Velicu, C.H. Grein, P.Y. Emelie, A. Itsuno, J.D. Philips, and P. Wijewarnasuriya, J. Electron. Mater. 39, 873 (2010).  https://doi.org/10.1007/s11664-010-1218-0.CrossRefGoogle Scholar
  21. 21.
    W.W. Anderson, Infrared Phys. 20, 363 (1980).  https://doi.org/10.1016/0020-0891(80)90053-6.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • O. Gravrand
    • 1
  • J. Rothman
    • 1
  • B. Delacourt
    • 1
  • F. Boulard
    • 1
  • C. Lobre
    • 1
  • Ph. Ballet
    • 1
  • J. L. Santailler
    • 1
  • C. Cervera
    • 1
  • D. Brellier
    • 1
  • N. Péré-Laperne
    • 2
  • V. Destefanis
    • 2
  • A. Kerlain
    • 2
  1. 1.CEA-LETI-MinatecGrenobleFrance
  2. 2.SofradirPalaiseauFrance

Personalised recommendations