Advertisement

Journal of Electronic Materials

, Volume 47, Issue 11, pp 6507–6517 | Cite as

Electropolymerization of Stable Leucoemeraldine Base Polyaniline Film and Application for Quantitative Detection of Escherichia coli O157:H7

  • Xiaoyan Mo
  • Guangying Zhao
  • Wenchao Dou
Article
  • 31 Downloads

Abstract

A stable leucoemeraldine base polyaniline (PANI) has been optimally electrodeposited on a bare screen-printed carbon electrode (SPCE) using a potentiostatic method and a nonenzymatic electrochemical immunosensor for quantitative detection of Escherichia coli O157:H7 (E. coli O157:H7) fabricated. The stability, electroactivity, and surface morphology of the PANI film were studied by cyclic voltammetry and scanning electron microscopy. The PANI film formed by the potentiostatic method was firmly attached to the SPCE, being more stable than PANI film electrodeposited by a cyclic voltammetric method. Gold nanoparticles (AuNPs) were linked to the PANI film and used as a connector to an antibody against E. coli O157:H7 (Ab). E. coli O157:H7 was quantitatively detected by differential pulse voltammetry based on the PANI/Ab-modified SPCE. The principle of this quantitative method is based on a prominent decrease of the current after specific binding to E. coli O157:H7. Under the optimized conditions, a linear relationship between the peak current change (ΔI) and the logarithm of the E. coli O157:H7 concentration was obtained in the range from 4.0 × 104 colony-forming units (CFU)/mL to 4.0 × 109 CFU/mL, with limit of detection (LOD) of 7.98 × 103 CFU/mL at signal-to-noise ratio (S/N) of 3. The immunoassay exhibited acceptable specificity, reproducibility, and stability for detection of E. coli O157:H7. In future work, the proposed approach could be used to prepare stable films which can withstand sonication and strong acid.

Keywords

Polyaniline potentiostatic electrodeposition Escherichia coli O157:H7 electrochemical immunosensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of Zhejiang Province (LY17C200003), the Food and Engineering Most Important Discipline of Zhejiang Province (2017SIAR210, JYTSP20141062), Zhejiang Public Innovation Platform Analysis and Testing Project (2018C37056), Plans of College Students in Zhejiang Province and Technology Innovation Activities (acrobatic tender grass talent program) Project (1110KZN0217054G, 1110KZN0217053G), Open Fund of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and The First Affiliated Hospital of Medical College, Zhejiang University (2017KF02).

Supplementary material

11664_2018_6517_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2587 kb)

References

  1. 1.
    Q. Zhou, Y. Lin, K. Zhang, M. Li, and D. Tang, Biosens. Bioelectron. 101, 146 (2017).CrossRefGoogle Scholar
  2. 2.
    K. Zhang, S. Lv, Z. Lin, M. Li, and D. Tang, Biosens. Bioelectron. 101, 159 (2017).CrossRefGoogle Scholar
  3. 3.
    D. Tang and J. Shu, Chem. Asian J. 12, 2780 (2017).CrossRefGoogle Scholar
  4. 4.
    Z. Qiu, J. Shu, and D. Tang, Anal. Chem. 90, 1021 (2017).CrossRefGoogle Scholar
  5. 5.
    J. Shu, Z. Qiu, S. Lv, K. Zhang, and D. Tang, Anal. Chem. 90, 2425 (2018).CrossRefGoogle Scholar
  6. 6.
    L. Bai, R. Yuan, Y. Chai, Y. Yuan, L. Mao, and Y. Wang, Anal. Chim. Acta 698, 14 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Huang, S. Lu, C. Huang, J. Sheng, L. Zhang, W. Su, and Q. Xiao, Sens. Actuators, B 224, 22 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Weremfo, T.C.F. Sui, A. Khan, D.B. Hibbert, and C. Zhao, Electrochim. Acta 231, 20 (2017).CrossRefGoogle Scholar
  9. 9.
    C. Hu, W. Dou, and G. Zhao, Electrochim. Acta 117, 239 (2014).CrossRefGoogle Scholar
  10. 10.
    P.Y. Cheung and M.K. Kai, Food Res. Int. 45, 802 (2012).CrossRefGoogle Scholar
  11. 11.
    C. Yi, J.H. Lee, B.S. Kwak, M.X. Lin, H.O. Kim, and H.I. Jung, Sens. Actuators, B 191, 305 (2014).CrossRefGoogle Scholar
  12. 12.
    J.J. Shi, T.T. He, F. Jiang, E.S. Abdelhalim, and J.J. Zhu, Biosens. Bioelectron. 55, 51 (2014).CrossRefGoogle Scholar
  13. 13.
    A.P. Washe and P. Lozano, Electrochim. Acta 91, 166 (2013).CrossRefGoogle Scholar
  14. 14.
    R. Pallela, P. Chandra, H.B. Noh, and Y.B. Shim, Biosens. Bioelectron. 85, 883 (2016).CrossRefGoogle Scholar
  15. 15.
    M.J. Monerris, F. D´Eramo, F.J. Arévalo, H. Fernández, M.A. Zon, and P.G. Molina, Microchem. J. 129, 71 (2016).CrossRefGoogle Scholar
  16. 16.
    D. Wang, W. Dou, G. Zhao, and Y. Chen, J. Microbiol. Methods 106, 110 (2014).CrossRefGoogle Scholar
  17. 17.
    Y.S. Fang, H.Y. Wang, L.S. Wang, and J.F. Wang, Biosens. Bioelectron. 51, 310 (2014).CrossRefGoogle Scholar
  18. 18.
    F. Liu, G. Xiang, D. Jiang, L. Zhang, X. Chen, L. Liu, F. Luo, Y. Li, C. Liu, and X. Pu, Biosens. Bioelectron. 74, 214 (2015).CrossRefGoogle Scholar
  19. 19.
    L. Zhao, S. Li, J. He, G. Tian, Q. Wei, and H. Li, Biosens. Bioelectron. 49, 222 (2013).CrossRefGoogle Scholar
  20. 20.
    G. Fusco, F. Gallo, C. Tortolini, P. Bollella, F. Ietto, M.A. De, A. D’Annibale, R. Antiochia, G. Favero, and F. Mazzei, Biosens. Bioelectron. 93, 52 (2016).CrossRefGoogle Scholar
  21. 21.
    Y. Su, H. Zhu, and H. Dong, Anal. Lett. 48, 477 (2015).CrossRefGoogle Scholar
  22. 22.
    P. Si, H. Chen, P. Kannan, and D.H. Kim, Analyst 136, 5134 (2011).CrossRefGoogle Scholar
  23. 23.
    H. Ni, X. Sun, Z. Song, S. Niu, and X. Luo, Biosens. Bioelectron. 86, 143 (2016).CrossRefGoogle Scholar
  24. 24.
    Y. Zhang and G.C. Rutledge, Macromolecules 45, 4238 (2012).CrossRefGoogle Scholar
  25. 25.
    J.E.D. Albuquerque, L.H.C. Mattoso, R.M. Faria, J.G. Masters, and A.G. Macdiarmid, Synth. Met. 146, 1 (2004).CrossRefGoogle Scholar
  26. 26.
    C. Dhand, M. Das, M. Datta, and B.D. Malhotra, Biosens. Bioelectron. 26, 2811 (2011).CrossRefGoogle Scholar
  27. 27.
    H.F. Jiang and X.X. Liu, Electrochim. Acta 55, 7175 (2010).CrossRefGoogle Scholar
  28. 28.
    A. Parsa and S.A. Ghani, Polymer 49, 3702 (2008).CrossRefGoogle Scholar
  29. 29.
    Y. Zheng, H. Wang, and Z. Ma, Microchim. Acta 184, 4269 (2017).CrossRefGoogle Scholar
  30. 30.
    W. Yan, X. Chen, X. Li, X. Feng, and J.J. Zhu, J. Phys. Chem. B 112, 1275 (2008).CrossRefGoogle Scholar
  31. 31.
    M. Bartoszek, M. Wecks, G. Jakobs, and D. Möhlmann, E. Flammarion 160, 1070 (2011).Google Scholar
  32. 32.
    R.J. Klingler and J.K. Kochi, J. Phys. Chem. 85, 1731 (2002).CrossRefGoogle Scholar
  33. 33.
    K. Bade, V. Tsakova, and J.W. Schultze, Electrochim. Acta 37, 2255 (1992).CrossRefGoogle Scholar
  34. 34.
    R. Córdova, M.A.D. Valle, A. Arratia, H. Gómez, and R. Schrebler, J. Electroanal. Chem. 377, 75 (1994).CrossRefGoogle Scholar
  35. 35.
    Y. Wang, Z. Yong, S. Yu, L. Feng, H. Ma, L. He, B. Du, and W. Qin, Talanta 124, 60 (2014).CrossRefGoogle Scholar
  36. 36.
    L. Yang, H. Zhao, S. Fan, S. Deng, Q. Lv, J. Lin, and C.P. Li, Biosens. Bioelectron. 57, 199 (2014).CrossRefGoogle Scholar
  37. 37.
    P.K. Vabbina, A. Kaushik, N. Pokhrel, S. Bhansali, and N. Pala, Biosens. Bioelectron. 63, 124 (2015).CrossRefGoogle Scholar
  38. 38.
    S.M. Radke and E.C. Alocilja, Biosens. Bioelectron. 20, 1662 (2005).CrossRefGoogle Scholar
  39. 39.
    Y. Wang, Z. Ye, C. Si, and Y. Ying, Sensors. 11, 2728 (2011).CrossRefGoogle Scholar
  40. 40.
    A. Wolter, R. Niessner, and M. Seidel, Anal. Chem. 80, 5854 (2008).CrossRefGoogle Scholar
  41. 41.
    L.C. Shriver-Lake, S. Turner, and C.R. Taitt, Anal. Chim. Acta 584, 66 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina

Personalised recommendations