Advertisement

Journal of Electronic Materials

, Volume 47, Issue 10, pp 6078–6085 | Cite as

Enhanced Absorption and Photoemission from TiO2 Nanowire/Graphene Oxide Thin-Film Heterostructure

  • Prasenjit Deb
  • J.C. Dhar
Article

Abstract

Vertically oriented TiO2 nanowires (NWs) have been fabricated on graphene oxide (GO) thin film (TF) using a catalytic free growth technique called glancing-angle deposition. GO TF was spin coated on Si substrate at different rotation speeds and the surface roughness measured by atomic force microscopy. Field-emission scanning electron microscopy confirmed formation of a heterostructure consisting of GO TF with thickness of ∼ 300 nm and TiO2 NWs with length of ∼ 800 nm. Selected-area electron diffraction analysis in transmission electron microscopy showed that the TiO2 NWs grown on the GO TF were amorphous in nature, as confirmed by x-ray diffraction analysis. A bandgap close to ∼ 4.1 eV was obtained for GO TF, whereas a main band transition edge at 3.3 eV was obtained for a TiO2 NW/GO TF heterostructure sample, related to TiO2. Two subband transitions at 2.9 eV and 2.4 eV were also observed for the heterostructure sample, corresponding to oxygen and Ti3+ defect transitions for the TiO2 NWs. Enhanced photoluminescence and absorption were observed for the heterostructure sample as compared with the GO TF sample.

Keywords

GLAD nanowires photoluminescence thin film TiO2 graphene oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to SAIF, NEHU Shillong for TEM analysis, NCPRE, IIT Bombay for FE-SEM, Dr. Thiyam David Singh, Department of Chemistry, NIT Manipur for PL measurements, Dr. Debarun Dhar Purkayasta, Department of Physics, NIT Nagaland for providing the spin coater, and Dr. Ardhendu Saha, Department of Electrical Engineering, NIT Agartala, India for providing optical measurement facility, as well as NIT Nagaland for financial support.

References

  1. 1.
    W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  2. 2.
    C.T. Chien, S.S. Li, W.J. Lai, Y.C. Yeh, H.A. Chen, I.S. Chen, L.C. Chen, K.H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.W. Chen, Angew. Chem. 124, 6766 (2012).CrossRefGoogle Scholar
  3. 3.
    V. Galstyan, E. Comini, I. Kholmanov, G. Faglia, and G. Sberveglieri, RSC Adv. 6, 34225 (2016).CrossRefGoogle Scholar
  4. 4.
    D. Shao, M. Yu, J. Lian, and S. Sawyer, Nanotechnology 24, 295701 (2013).CrossRefGoogle Scholar
  5. 5.
    L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, G. Li, Z. Sun, and C. Chen, Sci. Rep. 5, 9298 (2015).CrossRefGoogle Scholar
  6. 6.
    L. Li, L. Yu, Z. Lin, and G. Yang, ACS Appl. Mater. Interfaces 8, 8536 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev. 114, 9919 (2014).CrossRefGoogle Scholar
  8. 8.
    U.H. Zeng, Y. Cao, S. Xie, J. Yang, Z. Tang, X. Wang, and L. Sun, Nanosc. Res. Lett. 8, 133 (2013).CrossRefGoogle Scholar
  9. 9.
    L. Liu, J. Liu, and D.D. Sun, Catal. Sci. Technol. 2, 2525 (2012).CrossRefGoogle Scholar
  10. 10.
    B. Lu, N. Ma, Y. Wang, Y. Qiu, H. Hu, J. Zhao, D. Liang, S. Xu, X. Li, Z. Zhu, and C. Cui, J. Alloys Compd. 630, 163 (2015).CrossRefGoogle Scholar
  11. 11.
    G. Liao, S. Chen, X. Quan, H. Yu, and H. Zhao, J. Mater. Chem. 22, 2721 (2012).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, J. Tian, H. Li, L. Wang, X. Qin, A.M. Asiri, A. Youbi, and X. Sun, Langmuir 28, 12893 (2012).CrossRefGoogle Scholar
  13. 13.
    P.S. Venkatesh, S. Balakumar, and K. Jeganathan, RSC Adv. 4, 5030 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Dhara and P.K. Giri, J. Exp. Nanosci. 8, 332 (2013).CrossRefGoogle Scholar
  15. 15.
    H.B. Wu, H.H. Hng, and X.W. Lou, Adv. Mater. 24, 2567 (2012).CrossRefGoogle Scholar
  16. 16.
    B. Liu, A. Khare, and E.S. Aydil, ACS Appl. Mater. Interfaces 3, 4444 (2011).CrossRefGoogle Scholar
  17. 17.
    P. Chinnamuthu, A. Mondal, N.K. Singh, J.C. Dhar, K.K. Chattopadhyay, and S. Bhattacharya, J. Appl. Phys. 112, 054315 (2012).CrossRefGoogle Scholar
  18. 18.
    R.K. Biroju, N. Tilak, G. Rajender, S. Dhara, and P.K. Giri, Nanotechnology 26, 145601 (2015).CrossRefGoogle Scholar
  19. 19.
    L.C. Sim, K.H. Leong, S. Ibrahim, and P. Saravanan, J. Mater. Chem. A 2, 5315 (2014).CrossRefGoogle Scholar
  20. 20.
    J.C. Dhar, A. Mondal, N.K. Singh, S. Chakrabartty, A. Bhattacharyya, and K.K. Chattopadhyay, J. Appl. Phys. 114, 244310 (2013).CrossRefGoogle Scholar
  21. 21.
    P. Ramesh, S. Bhagyalakshmi, and S. Sampath, J. Colloid Interface Sci. 274, 95 (2004).CrossRefGoogle Scholar
  22. 22.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff, Nature 448, 457 (2007).CrossRefGoogle Scholar
  23. 23.
    X. Wang and T. Liu, J. Macromol. Sci. Part B Phys. 50, 1098 (2011).CrossRefGoogle Scholar
  24. 24.
    S. Gahlot, P.P. Sharma, H. Gupta, V. Kulshrestha, and P.K. Jha, RSC Adv. 4, 24662 (2014).CrossRefGoogle Scholar
  25. 25.
    J.C. Dhar, A. Mondal, N.K. Singh, and K.K. Chattopadhyay, J. Appl. Phys. 113, 174304 (2013).CrossRefGoogle Scholar
  26. 26.
    B. Fuhrmann, H.S. Leipner, and H.R. Höche, Nano Lett. 5, 2524 (2005).CrossRefGoogle Scholar
  27. 27.
    B. Shougaijam, R. Swain, C. Ngangbam, and T.R. Lenka, IEEE TNANO 15, 389 (2016).Google Scholar
  28. 28.
    W. Fan, Q. Lai, Q. Zhang, and Y. Wang, J. Phys. Chem. C 115, 10694 (2011).CrossRefGoogle Scholar
  29. 29.
    H.C. Hsu, I. Shown, H.Y. Wei, Y.C. Chang, H.Y. Du, Y.G. Lin, C.A. Tseng, C.H. Wang, L.C. Chen, Y.C. Lin, and K.H. Chen, Nanoscale 5, 262 (2013).CrossRefGoogle Scholar
  30. 30.
    P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, and N.K. Singh, J. Phys. D Appl. Phys. 45, 135102 (2012).CrossRefGoogle Scholar
  31. 31.
    J.C. Dhar, A. Mondal, S. Bhattacharya, N.K. Singh, C. Ngangbam, and K.K. Chattopadhyay, J. Nanosci. Nanotechnol. 15, 5 (2015).Google Scholar
  32. 32.
    D. Kozawa, Y. Miyauchi, S. Mouri, and K. Matsuda, J. Phys. Chem. Lett. 4, 2035 (2013).CrossRefGoogle Scholar
  33. 33.
    J.R. Rani, J. Lim, J. Oh, J.W. Kim, H.S. Shin, J.H. Kim, S. Lee, and S.C. Jun, J. Phys. Chem. C 116, 19010 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology NagalandDimapurIndia

Personalised recommendations