Advertisement

Journal of Electronic Materials

, Volume 47, Issue 10, pp 6036–6041 | Cite as

Electrochemical Measurements of a Conducting Polymer for Optimizing Detector Applications

  • Hamida H. Hamid
  • A. M. Elshaer
  • Mohamed E. Harb
  • Sh. Ebrahim
  • Moataz M. Soliman
Article
  • 15 Downloads

Abstract

An electrochemical method was used to prepare polyaniline (PANI) with hydrochloric acid as a dopant. This electroactive material was fabricated using electrically modified carbon coated Teflon electrodes with an area of 0.64 cm2 in 1 M HCl. PANI was electrochemically synthesized using cyclic voltammetry (CV) with a variable number of cycles, scan rates, and step sizes at potentials ranging from − 0.2 V to 0.8 V. Fabricated samples were tested using different electrochemical techniques including CV, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The DPV and EIS measurements indicate a linear relationship between both the current peak and the charge transfer resistance (Rct) and pH. These measurements showed that the prepared electrochemical device can be used as a sensor for pH. Optimum preparation parameters were 30 cycles, 50 mV/s scan rate and 2 mV step size. A linear relationship between oxidation current and pH of the solution with a correlation coefficient of 0.97 in the range of 1–5 makes PANI a candidate to be used as a pH sensor.

Keywords

Polyaniline cyclic voltammetry differential pulse voltammetry electrodeposition pH sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Harb, S. Ebrahim, M. Soliman, and M. Shabana, J. Electron. Mater. 47, 353 (2017).CrossRefGoogle Scholar
  2. 2.
    A.M. Elshaer, M. Tayel, S. Ebrahim, and M. Soliman, Sens. Actuator A 238, 389 (2016).CrossRefGoogle Scholar
  3. 3.
    M.B. Tayel, M. Soliman, S. Ebrahim, and M.E. Harb, J. Electron. Mater. 45, 820 (2016).CrossRefGoogle Scholar
  4. 4.
    G. Inzelt, Conducting Polymers. Monographs in Electrochemistry, ed. F. Scholz (Springer, Berlin, 2008).Google Scholar
  5. 5.
    A.M.P. Hussain and A. Kumar, Bull. Mater. Sci. 26, 329 (2003).CrossRefGoogle Scholar
  6. 6.
    W.C. Chen, T.C. Wen, C.C. Hu, and A. Gopalan, Electrochim. Acta 47, 1305 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Tawde, D. Mukesh, and J.V. Yakhmi, Synth. Metals 125, 401 (2002).CrossRefGoogle Scholar
  8. 8.
    B. Wang, J. Tang, and F. Wang, Synth. Met. 18, 323 (1987).CrossRefGoogle Scholar
  9. 9.
    A.Y. Obaid, E.H. El-Mossalamy, S.A. Al-Thabaiti, I.S. El-Hallag, A.A. Hermas, and A.M. Asiri, Int. J. Electrochem. Sci. 9, 1003 (2014).Google Scholar
  10. 10.
    H. Hamid, M.E. Harb, A.M. Elshaer, S. Ebrahim, and M. Soliman, Microsys. Technol. 24, 1775 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Hamida H. Hamid
    • 1
  • A. M. Elshaer
    • 2
  • Mohamed E. Harb
    • 3
  • Sh. Ebrahim
    • 1
  • Moataz M. Soliman
    • 1
  1. 1.Department of Materials Science, Institute of Graduate Studies and ResearchAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Computer EngineeringHigher Institute of Engineering and TechnologyEl-BoheiraEgypt
  3. 3.Department of Electronics and Communication EngineeringHigher Institute of Engineering and Technology, K-MarriottAlexandriaEgypt

Personalised recommendations