Advertisement

Journal of Electronic Materials

, Volume 47, Issue 10, pp 5959–5964 | Cite as

Characterization of La-Zn Substituted Co2Y Hexagonal Ferrite

  • R. Vinaykumar
  • Jyoti
  • Japes Bera
Article
  • 15 Downloads

Abstract

La-Zn substituted Ba2Co2Fe12O22 (Co2Y) hexagonal ferrite was synthesized using a conventional solid-state method with composition Ba2−xLaxCo2Fe12−xZnxO22, where x equals 0.0, 0.1, 0.3 and 0.5. The phase formation behavior and changes in the crystal structure of the substituted ferrite were investigated using x-ray diffraction (XRD) analysis. Accurate lattice parameters were evaluated through Rietveld refinement of the XRD pattern. XRD, as well as energy dispersive spectral analysis, showed the formation of a lanthanum iron oxide phase in x = 0.3 and 0.5 compositions. There was a small increase in unit cell volume with the substitution. The microstructural analysis showed a decrease in grain size with increasing substitution. The magnetic properties; Ms, Mr, and Hc of the ferrite were measured and found to increase with increasing substitution. Permittivity and permeability were measured and found in the range 10–16. It can be concluded that the La-Zn substitution was an effective method for improving magnetic and dielectric properties of the Co2Y ferrite.

Keywords

Co2Y hexagonal ferrite solid state reaction La-Zn substitution grain growth inhibitor magneto-dielectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the SERB-DST (Grant No. SB/S3/ME/076/2013) of Government of India. Also, authors would like to acknowledge Dr. Prakash Nath Vishwakarma, Department of Physics and Astronomy, NIT Rourkela for the help on measuring the magnetic properties of the samples.

References

  1. 1.
    G.H. Jonker, H.P.J. Wijn, and P.B. Braun, Philips Tech. Rev. 18, 145 (1956).Google Scholar
  2. 2.
    J. Smit and H.P.J. Wijn, Ferrites (The Netherlands: Philips Technical Library, 1959).Google Scholar
  3. 3.
    M. Sugimoto, Ferromagnetic Materials, vol. 3, ed. E.P. Wohfarth (Amsterdam: North-Holland Physics Publishing, 1980), p. 394.Google Scholar
  4. 4.
    R.C. Pullar, Prog. Mater Sci. 57, 1191 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Obol and C. Vittoria, IEEE Trans. Magn. 39, 3103 (2003).CrossRefGoogle Scholar
  6. 6.
    Y. Bai, J. Zhou, Z. Gui, and L. Li, Mater. Sci. Eng. B 103, 115 (2003).CrossRefGoogle Scholar
  7. 7.
    M. Wu, H. Zhang, X. Yao, and L. Zhang, J. Phys. D 34, 889 (2001).CrossRefGoogle Scholar
  8. 8.
    X. Niu, Y. Liu, M. Li, B. Wu, and H. Li, J. Electron. Mater. 46, 7 (2017).CrossRefGoogle Scholar
  9. 9.
    T.T. Loan, T.T. Viet Nga, N.P. Duong, S. Soontaranon, and T.D. Hien, J. Electron. Mater. 46, 6 (2017).CrossRefGoogle Scholar
  10. 10.
    Y. Wang, L. Li, H. Liu, H. Qiu, and F. Xu, Mater. Lett. 62, 2060 (2008).CrossRefGoogle Scholar
  11. 11.
    D. Seifert, J. Topfer, F. Langenhorst, J.M. LeBreton, H. Chiron, and L. Lechevallier, J. Magn. Magn. Mater. 321, 4045 (2009).CrossRefGoogle Scholar
  12. 12.
    H. Taguchi, T. Takeshi, and K. Suwa, J. Magn. Soc. Jpn. 21, 901 (1997).CrossRefGoogle Scholar
  13. 13.
    Z.H. Hua, S.Z. Li, Z.D. Han, D.H. Wang, M. Lu, W. Zhong, B.X. Gu, and Y.W. Du, Mater. Sci. Eng. A 448, 326 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Bai, X. Liu, T. Xie, F. Wei, and Z. Yang, Mater. Sci. Eng. B 68, 182 (2000).CrossRefGoogle Scholar
  15. 15.
    J.C.C. Huacuz and G.M. Suarez, J. Magn. Magn. Mater. 242–245, 430 (2002).CrossRefGoogle Scholar
  16. 16.
    D.U. You-wei, L.U. Huai-xian, Z. Yu-cheng, and W. Ting-xiang, J. Magn. Magn. Mater. 31–34, 793 (1983).Google Scholar
  17. 17.
    E.H. Nejad, Y.A. Farzin, and M.A. Heydari, J. Magn. Magn. Mater. 423, 226 (2017).CrossRefGoogle Scholar
  18. 18.
  19. 19.
    R. Grossinger, Phys. Stat. Sol. A 66, 665 (1981).CrossRefGoogle Scholar
  20. 20.
    C.M. Kim, C.H. Rhee, and C.S. Kim, IEEE Trans. Magn. 48, 11 (2012).Google Scholar
  21. 21.
    S. Bierlich and J. Topfer, J. Magn. Magn. Mater. 324, 1804 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations