Journal of Electronic Materials

, Volume 47, Issue 10, pp 5965–5972 | Cite as

Optimized Fabrication of TiO2 Nanotubes Array/SnO2-Sb/Fe-Doped PbO2 Electrode and Application in Electrochemical Treatment of Dye Wastewater

  • Chao Yang
  • Yumin Wang
  • Bin Hu
  • Heng Zhang
  • Yanqi Lv
  • Xingfu Zhou


A TiO2 nanotubes array/SnO2-Sb/Fe-doped PbO2 electrode with high oxygen evolution potential and enhanced electrochemical oxidation performance was successfully manufactured. The surface morphology and electrochemical performance of the electrode were characterized by a field emission scanning electron microscope, linear sweep voltammetry, and electrochemical impedance spectroscopy experiments. The effect of Fe doping concentration on the electrode performance was also investigated. This study shows the doping of Fe on a PbO2 electrode improved the micro-morphology and the conductivity of the electrode. The oxygen evolution potential was also increased to 1.95 V [versus a saturated calomel electrode (SCE)] via Fe doping. The optimal condition of Fe doping concentration was 0.02 M. The optimized electrode showed that the decoloration rate and total organic carbon removal ratio of methylene blue approached 98% and 96% after 30 min of electrochemical treatment, respectively. The accelerated lifetime of the optimized Fe-doped electrode was approximately 4.3 times larger than that of the undoped PbO2 electrode. A Ti/TiO2 nanotubes array/SnO2-Sb/Fe-doped PbO2 anode shows potential application in the electrochemical treatment of organic dye wastewater.


Electrochemical oxidation TiO2 nanotubes array Fe-doped PbO2 electrode methylene blue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Natural Science Foundation of China (Nos. 21676146 and 51272104); the Financial Foundation of State Key Laboratory of Materials-Oriented Chemical Engineering and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    E. Brillas and C.A. Martínez-Huitle, Appl. Catal. B Environ. 87, 105 (2009).CrossRefGoogle Scholar
  2. 2.
    E. Guinea, C. Arias, P.L. Cabot, J.A. Garrido, R.M. Rodríguez, F. Centellas, and E. Brillas, Water Res. 42, 499 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Skoumal, C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodriguez, and E. Brillas, Chenosphere 71, 1718 (2008).CrossRefGoogle Scholar
  4. 4.
    D. Maharana, J. Niu, D. Gao, Z. Xu, and J. Shi, Water. Environ. Res. 87, 304 (2015).Google Scholar
  5. 5.
    T. Duan, Y. Chen, Q. Wen, and Y. Duan, RSC Adv. 5, 19601 (2015).CrossRefGoogle Scholar
  6. 6.
    L. Zhang, L. Xu, J. He, and J. Zhang, Electrochim. Acta 117, 192 (2014).CrossRefGoogle Scholar
  7. 7.
    O. Shmychkova, T. Luk’Yanenko, R. Amadelli, and A. Velichenko, J. Electroanal. Chem. 706, 86 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Mukimin, H. Vistanty, and N. Zen, Chem. Eng. J. 258, 430 (2015).CrossRefGoogle Scholar
  9. 9.
    A. Urtiaga, C. Fernández-González, S. Gómez-Lavín, and I. Ortiz, Chemosphere 129, 20 (2014).CrossRefGoogle Scholar
  10. 10.
    M. Ullah, E. Ahmed, F. Hussain, A.M. Rana, and R. Raza, Appl. Surf. Sci. 334, 40 (2015).CrossRefGoogle Scholar
  11. 11.
    F. Beck, W. Kaiser, and H. Krohn, Electrochim. Acta 45, 4691 (2000).CrossRefGoogle Scholar
  12. 12.
    X. Cui, G. Zhao, Y. Lei, H. Li, P. Li, and M. Liu, Mater. Chem. Phys. 113, 314 (2009).CrossRefGoogle Scholar
  13. 13.
    W. Zhang, H. Kong, H. Lin, H. Lu, W. Huang, J. Yin, Z. Lin, and J. Bao, J. Alloys Compd. 650, 705 (2015).CrossRefGoogle Scholar
  14. 14.
    J. Wu, H. Xu, and W. Yan, RSC Adv. 5, 19284 (2015).CrossRefGoogle Scholar
  15. 15.
    Z. Tang, J. Zhou, L. Qi, L. Liu, S. Li, H. Sun, and G. Zhang, Int. J. Electrochem. Sci. 12, 4465 (2017).CrossRefGoogle Scholar
  16. 16.
    Y. Chen, H. Li, W. Liu, Y. Tu, Y. Zhang, W. Han, and L. Wang, Chemosphere 113, 48 (2014).CrossRefGoogle Scholar
  17. 17.
    X. Chen, F. Gao, and G. Chen, J. Appl. Electrochem. 35, 185 (2005).CrossRefGoogle Scholar
  18. 18.
    N. Chahmana, L. Zerroual, and M. Matrakova, J. Power Sources 191, 144 (2009).CrossRefGoogle Scholar
  19. 19.
    O. Shmychkova, T. Luk’Yanenko, A. Velichenko, L. Meda, and R. Amadelli, Electrochim. Acta. 111, 332 (2013).CrossRefGoogle Scholar
  20. 20.
    O. Shmychkova, T. Luk’Yanenko, A. Yakubenko, R. Amadelli, and A. Velichenko, Appl. Catal. B Environ. 162, 346 (2015).CrossRefGoogle Scholar
  21. 21.
    H. Lin, J. Niu, J. Xu, H. Huang, D. Li, Z. Yue, and C. Feng, Environ. Sci. Technol. 47, 13039 (2013).CrossRefGoogle Scholar
  22. 22.
    R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, L. Bottomley, D. Li, Y. Chen, and J. Crittenden, Appl. Catal. B Environ. 203, 515 (2017).CrossRefGoogle Scholar
  23. 23.
    Z. Wang, M. Xu, F. Wang, X. Liang, Y. Wei, Y. Hu, C.G. Zhu, and W. Fang, Electrochim. Acta 247, 535 (2017).CrossRefGoogle Scholar
  24. 24.
    Z. Xu, H. Liu, J. Niu, Y. Zhou, C. Wang, and Y. Wang, J. Hazard. Mater. 327, 144 (2017).CrossRefGoogle Scholar
  25. 25.
    Y. Jiang, Z. Hu, M. Zhou, L. Zhou, and B. Xi, Sep. Purif. Technol. 128, 67 (2014).CrossRefGoogle Scholar
  26. 26.
    X. Duan, C. Zhao, W. Liu, X. Zhao, and L. Chang, Electrochim. Acta 240, 424 (2017).CrossRefGoogle Scholar
  27. 27.
    J. Zhao, C. Zhu, J. Lu, C. Hu, S. Peng, and T. Chen, Electrochim. Acta 118, 169 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Chao Yang
    • 1
  • Yumin Wang
    • 1
  • Bin Hu
    • 1
  • Heng Zhang
    • 1
  • Yanqi Lv
    • 1
  • Xingfu Zhou
    • 1
  1. 1.College of Chemistry and Chemical Engineering, State Key Laboratory of Material-Oriented Chemical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations