Journal of Electronic Materials

, Volume 47, Issue 10, pp 5952–5958 | Cite as

Low Temperature Flip Chip Bonding Using Squeegee-Embedded Au Nanoporous Bump Activated by VUV/O3 Treatment

  • Weixin Fu
  • Tatsushi Kaneda
  • Akiko Okada
  • Kaori Matsunaga
  • Shuichi Shoji
  • Mikiko Saito
  • Hiroshi Nishikawa
  • Jun Mizuno


This paper describes low-temperature bonding realized by squeegee-embedded Au nanoporous bumps that were activated by vacuum ultraviolet in the presence of oxygen (VUV/O3). The VUV/O3 technology is confirmed to be a suitable surface treatment technique for Au nanoporous bump bonding because it maintains the highly reactive surface of the Au nanoporous bumps during the treatment. X-ray photoelectron spectroscopy confirmed that the VUV/O3 treatment was capable of removing organic contamination on the nanoporous surface, and scanning electron microscopy images showed that the ligament size of the nanoporous bumps stayed the same. After bonding, the ligament size of the VUV/O3-treated nanoporous structure grew to 54 nm compared with 27 nm for the untreated samples. This increase in ligament size was attributed to the improvement in nanoporous coalescence by removing organic contamination that obstructed Au atom diffusion. Furthermore, the highest strength of the VUV/O3-treated samples reached 8.9 MPa at a low temperature of 200°C, which was three times higher than that of the untreated sample. This technology is expected to assist manufacturing of future 3-D integrations.


Flip chip bonding low-temperature bonding Au nanoporous squeegee embedding VUV/O3 treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is partly supported by Japan Ministry of Education, Culture, Sports Science and Technology (MEXT) Grant-in-Aid for Scientific Basic Research (A) No. 16H02349 and Scientific Basic Research (B) No. 25289841. The authors thank the MEXT Nanotechnology Platform Support Project of Waseda University. The author W. Fu also acknowledges the Leading Graduate Program in Science and Engineering, Waseda University from MEXT, Japan.


  1. 1.
    K. Sakuma, P.S. Andry, C.K. Tsang, S.L. Wright, B. Dang, C.S. Patel, B.C. Webb, J. Maria, E.J. Sprogis, S.K. Kang, R.J. Polastre, R.R. Horton, and J.U. Knickerbocker, IBM J. Res. Dev. 52, 611 (2008).CrossRefGoogle Scholar
  2. 2.
    E. Higurashi, T. Imamura, T. Suga, and R. Sawada, IEEE Photon. Technol. Lett. 19, 1994 (2007).CrossRefGoogle Scholar
  3. 3.
    H.A.C. Tilmans, M.D.J. Van De Peer, and E. Beyne, J. Microelectromech. Syst. 9, 206 (2000).CrossRefGoogle Scholar
  4. 4.
    M.J. Wolf, G. Engelmann, L. Dietrich, and H. Reichl, Nucl. Instrum. Methods Phys. Res. Sect. A 565, 290 (2006).CrossRefGoogle Scholar
  5. 5.
    C.T. Ko and K.N. Chen, Microelectron. Reliab. 52, 302 (2012).CrossRefGoogle Scholar
  6. 6.
    J.W. Jang, L. Li, P. Bowles, R. Bonda, and D.R. Frear, Microelectron. Reliab. 52, 455 (2012).CrossRefGoogle Scholar
  7. 7.
    H. Alarifi, A. Hu, M. Yavuz, and Y.N. Zhou, J. Electron. Mater. 40, 1394 (2011).CrossRefGoogle Scholar
  8. 8.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).CrossRefGoogle Scholar
  9. 9.
    W. Fu, M. Nimura, T. Kasahara, H. Mimatsu, A. Okada, S. Shoji, S. Ishizuka, and J. Mizuno, J. Electron. Mater. 44, 4646 (2015).CrossRefGoogle Scholar
  10. 10.
    P.I. Wang, S.H. Lee, T.C. Parker, M.D. Frey, T. Karabacak, J.Q. Lu, and T.M. Lu, Electrochem. Solid-State Lett. 12, H138 (2009).CrossRefGoogle Scholar
  11. 11.
    H. Oppermann and L. Dietrich, Microelectron. Reliab. 52, 356 (2012).CrossRefGoogle Scholar
  12. 12.
    W.S. Wang, Y.C. Lin, T. Gessner, and M. Esashi, Jpn. J. Appl. Phys. 54, Art. No. 030215 (2015).Google Scholar
  13. 13.
    H. Mimatsu, J. Mizuno, T. Kasahara, M. Saito, H. Nishikawa, and S. Shoji, Jpn. J. Appl. Phys. 52, Art. No. 050204 (2013).Google Scholar
  14. 14.
    K. Matsunaga, M.S. Kim, H. Nishikawa, M. Saito, and J. Mizuno, in ICEP-IAAC Conference Proceedings, pp. 830–833 (2015).Google Scholar
  15. 15.
    H. Mimatsu, J. Mizuno, T. Kasahara, M. Saito, S. Shoji, and H. Nishikawa, in MEMS Conference Proceedings pp. 1131–1134 (2014).Google Scholar
  16. 16.
    T. Kaneda, J. Mizuno, A. Okada, K. Matsunaga, S. Shoji, M. Saito, and H. Nishikawa, in ICEP-IAAC Conference Proceedings, pp. 473–477 (2015).Google Scholar
  17. 17.
    J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Nature 410, 450 (2001).CrossRefGoogle Scholar
  18. 18.
    Y.H. Tan, J.A. Davis, K. Fujikawa, N.V. Ganesh, A.V. Demchenko, and K.J. Stine, J. Mater. Chem. 22, 6733 (2012).CrossRefGoogle Scholar
  19. 19.
    E. Higurashi, D. Chino, T. Suga, and R. Sawada, IEEE J. Sel. Top. Quantum Electron. 15, 1500 (2009).CrossRefGoogle Scholar
  20. 20.
    A. Shigetou, T. Itoh, and T. Suga, J. Mater. Sci. 40, 3149 (2005).CrossRefGoogle Scholar
  21. 21.
    K. Sakuma, J. Mizuno, N. Nagai, N. Unami, S. Shoji, and I.E.E.E. Trans, Electron. Packag. Manuf. 33, 212 (2010).CrossRefGoogle Scholar
  22. 22.
    N. Unami, K. Sakuma, J. Mizuno, and S. Shoji, Jpn. J. Appl. Phys. 49, 06GN121 (2010).Google Scholar
  23. 23.
    A. Okada, S. Shoji, M. Nimura, A. Shigetou, K. Sakuma, and J. Mizuno, Mater. Trans. 54, 2139 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Weixin Fu
    • 1
  • Tatsushi Kaneda
    • 1
  • Akiko Okada
    • 1
  • Kaori Matsunaga
    • 2
  • Shuichi Shoji
    • 1
  • Mikiko Saito
    • 3
  • Hiroshi Nishikawa
    • 4
  • Jun Mizuno
    • 3
  1. 1.Faculty of Science and EngineeringWaseda UniversityShinjukuJapan
  2. 2.Graduate School of EngineeringOsaka UniversitySuitaJapan
  3. 3.Research Organization for Nano and Life InnovationWaseda UniversityShinjukuJapan
  4. 4.Joining and Welding Research InstituteOsaka UniversityIbarakiJapan

Personalised recommendations