Advertisement

Journal of Electronic Materials

, Volume 47, Issue 9, pp 5370–5377 | Cite as

Structural, Magnetic and Microwave Properties of Gadolinium-Substituted Ca-Ba M-Type Hexagonal Ferrites

  • M. KanwalEmail author
  • I. Ahmad
  • T. Meydan
  • J. A. Cuenca
  • P. I. Williams
  • M. T. Farid
  • G. Murtaza
Article
  • 54 Downloads

Abstract

This paper presents a study on attempting to substitute Gd into a Ca-Ba M-type hexaferrite (Ca0.5Ba0.5GdxFe12−xO19, where x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) using the sol–gel method. The structural, magnetic and microwave properties of the resultant material were investigated. Since Gd has a much larger ionic radius than Fe, substitution is not straightforward as revealed by the structural analysis. X-ray diffraction (XRD) patterns revealed some substitution into the M-type phase due to a changing lattice parameter; however, significant quantities of additional phases of hematite (α-Fe2O3) and gadolinium orthoferrite started to form at concentrations of up to Gd = 0.10 and at higher Gd concentrations, respectively. High-resolution transmission electron microscopy of selected compositions showed d-spacings corresponding to the three phases observed in XRD, confirming the incomplete substitution of Gd. Scanning electron microscopy showed platelet-shaped grains. Vibrating sample magnetometry at room temperature showed varied results owing to a myriad of interactions from the hexaferrite and secondary phases. The microwave complex permittivity and permeability in the frequency range of 2–11 GHz showed little frequency dependence with nominal values for the complex permeability. All the compositions exhibit low magnetic losses with frequency except Gd = 0.10. Such type of materials can be used for microwave devices in the low-GHz range and as well as permanent magnets.

Keywords

Ca-Ba hexaferrites magnetic properties sol–gel process permeability permittivity rare-earth substitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.K. Mallick, P. Shepherd, and R.J. Green, J. Eur. Ceram. Soc. 27, 2045 (2007).CrossRefGoogle Scholar
  2. 2.
    H. Pfeiffer, R.W. Chantrell, P. Görnert, W. Schüppel, E. Sinn, and M. Rösler, J. Magn. Magn. Mater. 125, 373 (1993).CrossRefGoogle Scholar
  3. 3.
    J. Smit and H.P.J. Wijn, Ferrites (Eindhoven: Philips Technical Library, 1959).Google Scholar
  4. 4.
    W. Büchner, Industrial Inorganic Chemistry (London: VCH, 1989).Google Scholar
  5. 5.
    J. Qiu, M. Gu, and H. Shen, J. Magn. Magn. Mater. 295, 263 (2005).CrossRefGoogle Scholar
  6. 6.
    Y.W. Dou, Ferrite (Nanjing: Jiangsu Science and Technology Press, 1996).Google Scholar
  7. 7.
    N. Dishovski, A. Petkov, I. Nedkov, and I. Razkazov, IEEE Trans. Magn. 30, 969 (1994).CrossRefGoogle Scholar
  8. 8.
    R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).CrossRefGoogle Scholar
  9. 9.
    G. Albanese, J. Phys. Colloq. 38, C1-85 (1977).CrossRefGoogle Scholar
  10. 10.
    J. Töpfer, S. Schwarzer, S. Senz, and D. Hesse, J. Eur. Cerm. Soc. 25, 1681 (2005).CrossRefGoogle Scholar
  11. 11.
    F.M.M. Pereira, C. Junior, M.R.P. Santos, R.S.T.M. Sohn, F.N.A. Freire, J.M. Sasaki, J. De Paiva, and A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 19, 627 (2008).CrossRefGoogle Scholar
  12. 12.
    M.N. Ashiq, R.B. Qureshi, M.A. Malana, and M.F. Ehsan, J. Alloys Compd. 617, 437 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Sanghi and A. Agarwal, J. Alloys Compd. 513, 436 (2012).CrossRefGoogle Scholar
  14. 14.
    A. Hooda, S. Sanghi, A. Agarwal, and R. Dahiya, J. Magn. Magn. Mater. 387, 46 (2015).CrossRefGoogle Scholar
  15. 15.
    J.R. Morber, One-dimensional Nanowires: Understanding Growth and Properties as Steps Toward Biomedical and Electrical Application (Atlanta: Georgia Institute of Technology, 2008).Google Scholar
  16. 16.
    G. Dedigamua, P. Mukherjee, H. Srikanth, and S. Witanachchi, Progress in Nanotechnology: Processing (London: Wiley, 2010), p. 169.Google Scholar
  17. 17.
    I. Harward, R.E. Camley, and Z. Celinski, Appl. Phys. Lett. 105, 17 (2014).CrossRefGoogle Scholar
  18. 18.
    A.M. Blanco and C. Gonzalez, J. Phys. D Appl. Phys. 24, 612 (1991).CrossRefGoogle Scholar
  19. 19.
    S. Chang, S. Kangning, and C. Pengfei, J. Magn. Magn. Mater. 324, 802 (2012).CrossRefGoogle Scholar
  20. 20.
    G. Litsardakis, I. Manolakis, and K. Efthimiadis, J. Alloys Compd. 427, 194 (2007).CrossRefGoogle Scholar
  21. 21.
    G. Litsardakis, I. Manolakis, C. Serletis, and K. Efthimiadis, J. Appl. Phys. 103, 07E501 (2008).CrossRefGoogle Scholar
  22. 22.
    G. Litsardakis, I. Manolakis, C. Serletis, and K. Efthimiadis, J. Magn. Magn. Mater. 316, 170 (2007).CrossRefGoogle Scholar
  23. 23.
    F. Berry, J. Marco, C. Ponton, and K. Whittle, J. Mat. Sci. Lett. 20, 431 (2001).CrossRefGoogle Scholar
  24. 24.
    M. Jamalian, A. Ghasemi, and M.J. Pourhosseini Asl, J. Electron. Mater. 44, 2856 (2015).CrossRefGoogle Scholar
  25. 25.
    B. Rai, S. Mishra, V. Nguyen, and J. Liu, J. Alloys Compd. 581, 275 (2013).CrossRefGoogle Scholar
  26. 26.
    G. Albanese, B. Watts, F. Leccabue, and S.D.A. Castañón, J. Magn. Magn. Mater. 184, 337 (1998).CrossRefGoogle Scholar
  27. 27.
    F. Kools, A. Morel, R. Grössinger, J. Le Breton, and P. Tenaud, J. Magn. Magn. Mater. 242, 1270 (2002).CrossRefGoogle Scholar
  28. 28.
    R. Grossinger, C. Tellez Blanco, M. Kupferling, M. Muller, and G. Wiesinger, Phys. B 327, 202 (2003).CrossRefGoogle Scholar
  29. 29.
    J.S. McCloy, K. Korolev, J.V. Crum, and M.N. Afsar, IEEE Trans. Magn. 49, 546 (2013).CrossRefGoogle Scholar
  30. 30.
    C.-J. Li, B. Wang, and J.-N. Wang, J. Magn. Magn. Mater. 324, 1305 (2012).CrossRefGoogle Scholar
  31. 31.
    Z. Haijun, L. Zhichao, M. Chengliang, Y. Xi, Z. Liangying, and W. Mingzhong, Mat. Sci. Eng. B 96, 289 (2002).CrossRefGoogle Scholar
  32. 32.
    J. Jia, C. Liu, N. Ma, G. Han, W. Weng, and P. Du, Sci. Technol. Adv. Mater. 14, 045002 (2013).CrossRefGoogle Scholar
  33. 33.
    L. Chao and M.N. Afsar, JApp. Phys. 113, 17 (2013).Google Scholar
  34. 34.
    Ü. ÖzgÜri, Y. Alivov, and H. Morkoç, Microwave ferrites, part 1: fundamental properties. J. Mater. Sci. Mater. Electron. 20, 789 (2009).CrossRefGoogle Scholar
  35. 35.
    Y. Chen, A.L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V.G. Harris, J. Appl. Phys. 101, 09M501 (2007).CrossRefGoogle Scholar
  36. 36.
    J.A. Cuenca, S. Klein, R. Rüger, and A. Porch, in 44th European Microwave Conference (EuMC), p. 128 (2014).Google Scholar
  37. 37.
    J.A. Cuenca, E. Thomas, S. Mandal, O. Williams, and A. Porch, IEEE Trans. Microw. Theory Tech. 63, 4110 (2015).CrossRefGoogle Scholar
  38. 38.
    D. Slocombe, A. Porch, E. Bustarret, and O.A. Williams, Appl. Phys. Lett. 102, 244102 (2013).CrossRefGoogle Scholar
  39. 39.
    J.A. Cuenca, K. Bugler, S. Taylor, D. Morgan, P. Williams, J. Bauer, and A. Porch, J. Phys. Condens. Matter 28, 10 (2016).CrossRefGoogle Scholar
  40. 40.
    L. Lechevallier, J.M.L. Breton, A. Morel, and P. Tenaud, J. Phys. Condens. Matter 20, 175203 (2008).CrossRefGoogle Scholar
  41. 41.
    A. Deschamps and F. Bertaut, CR Acad. Sci. 17, 3069 (1957).Google Scholar
  42. 42.
    I. Ali, M. Islam, M. Awan, and M. Ahmad, J. Electron. Mater. 43, 512 (2014).CrossRefGoogle Scholar
  43. 43.
    Y. Yang and X. Liu, IEEE Trans. Magn. 50, 1 (2014).Google Scholar
  44. 44.
    O. Hemeda, M. Said, and M. Barakat, J. Magn. Magn. Mater. 224, 132 (2001).CrossRefGoogle Scholar
  45. 45.
    A. Ul-Haq and M. Anis-ur-Rehman, Key Eng. Mat. Trans. Tech. Publ. 510, 448 (2012).CrossRefGoogle Scholar
  46. 46.
    P.E. Lippens, J.C. Jumas, and J.M. Génin, ICAME 2005, France, Vol. 1 (Berlin: Springer, 2007).CrossRefGoogle Scholar
  47. 47.
    J. Park, Y.K. Hong, W. Lee, S.Y. An, J.W. Seo, and K.H. Hur, IEEE Magn. Lett. 6, 5500203 (2015).CrossRefGoogle Scholar
  48. 48.
    S.H. Mahmood, A. Awadallah, Y. Maswadeh, and I. Bsoul, IOP Conf. Ser.: Mater. Sci. Eng. 92, 012008 (2015).  https://doi.org/10.1088/1757-899X/92/1/012008
  49. 49.
    B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials (London: Wiley, 2011).Google Scholar
  50. 50.
    X. Batlle, X. Obradors, J. Rodríguez-Carvajal, M. Pernet, M. Cabanas, and M. Vallet, J. Appl. Phys. 70, 1614 (1991).CrossRefGoogle Scholar
  51. 51.
    M. Han, Y. Ou, W. Chen, and L. Deng, J. Alloys Compd. 474, 185 (2009).CrossRefGoogle Scholar
  52. 52.
    X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, and Y. Du, J. Magn. Magn. Mater. 238, 207 (2002).CrossRefGoogle Scholar
  53. 53.
    S. Ounnunkad, P. Winotai, and S. Phanichphant, J. Electroceramics 16, 357 (2006).CrossRefGoogle Scholar
  54. 54.
    B. Balasubramanian, P. Mukherjee, R. Skomski, P. Manchanda, B. Das, and D.J. Sellmyer, Sci. Rep. 4, 6265 (2014).CrossRefGoogle Scholar
  55. 55.
    F. Kools, J. Phys. Colloq. 46, C6-349 (1985).CrossRefGoogle Scholar
  56. 56.
    R.M. Cornell and U. Schwertmann, The Iron Oxides (London: Wiley, 2006).Google Scholar
  57. 57.
    C.L. He, S.J. Ma, X.J. Su, Q.H. Mo, and J.L. Yang, JMPEE 49, 131 (2015).Google Scholar
  58. 58.
    S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, and A. Kumar, Mater. Res. Express 3, 065017 (2016).CrossRefGoogle Scholar
  59. 59.
    C. Doroftei, E. Rezlescu, P. Dorin Popa, and N. Rezlescu, Cryst. Res. Technol. 41, 1112 (2006).CrossRefGoogle Scholar
  60. 60.
    J.J. Thomson and J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 2 (Charleston: BiblioLife, 2015).Google Scholar
  61. 61.
    K.W. Wagner, Anna Phys. 345, 817 (1913).CrossRefGoogle Scholar
  62. 62.
    C. Koops, Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • M. Kanwal
    • 1
    • 2
    Email author
  • I. Ahmad
    • 1
  • T. Meydan
    • 2
  • J. A. Cuenca
    • 2
  • P. I. Williams
    • 2
  • M. T. Farid
    • 1
  • G. Murtaza
    • 1
  1. 1.Department of PhysicsBahauddin Zakariya UniversityMultanPakistan
  2. 2.Wolfson Centre of Magnetics, Cardiff School of EngineeringCardiff UniversityCardiff, WalesUK

Personalised recommendations