Journal of Electronic Materials

, Volume 47, Issue 9, pp 5259–5268 | Cite as

The Role of the Substrate on Photophysical Properties of Highly Ordered 15R-SiC Thin Films

  • Satyendra Mourya
  • Jyoti Jaiswal
  • Gaurav Malik
  • Brijesh Kumar
  • Ramesh ChandraEmail author


We report on the structural optimization and photophysical properties of in situ RF-sputtered single crystalline 15R-SiC thin films deposited on various substrates (ZrO2, MgO, SiC, and Si). The role of the substrates on the structural, electronic, and photodynamic behavior of the grown films have been demonstrated using x-ray diffraction, photoluminescence (PL) and time-resolved photoluminescence spectroscopy. The appropriate bonding order and the presence of native oxide on the surface of the grown samples are confirmed by x-ray photoelectron spectroscopy measurement. A deep-blue PL emission has been observed corresponding to the Si-centered defects occurring in the native oxide. Deconvolution of the PL spectra manifested two decay mechanisms corresponding to the radiative recombination. The PL intensity and carrier lifetime were found to be substrate- dependent which may be ascribed to the variation in the trap-density of the films grown on different substrates.


Silicon carbide sputtering XPS photoluminescence time-resolved photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Forati, T.J. Dill, A. Tao, and D. Sievenpiper, Nat. Commun. 7, 1 (2016).CrossRefGoogle Scholar
  2. 2.
    D. Beke, T.Z. Jánosi, B. Somogyi, D. Major, Z. Szekrényes, J. Erostyák, K. Kamarás, and A. Gali, J. Phys. Chem. C 120, 685 (2016).CrossRefGoogle Scholar
  3. 3.
    G. Malik, J. Jaiswal, S. Mourya, and R. Chandra, J. Appl. Phys. 122, 143105 (2017).CrossRefGoogle Scholar
  4. 4.
    P. Waltereit, W. Bronner, R. Quay, M. Dammann, M. Cäsar, S. Müller, F. Van Raay, R. Kiefer, P. Brückner, J. Kühn, M. Musser, L. Kirste, C. Haupt, W. Pletschen, T. Lim, R. Aidam, M. Mikulla, and O. Ambacher, Phys. Status Solidi Appl. Mater. Sci. 209, 491 (2012).CrossRefGoogle Scholar
  5. 5.
    N.G. Wright, A.B. Horsfall, and K. Vassilevski, Mater. Today 11, 16 (2008).CrossRefGoogle Scholar
  6. 6.
    R. Wu, K. Zhou, C.Y. Yue, J. Wei, and Y. Pan, Prog. Mater. Sci. 72, 1 (2015).CrossRefGoogle Scholar
  7. 7.
    S. Perisanu, V. Gouttenoire, P. Vincent, A. Ayari, M. Choueib, M. Bechelany, D. Cornu, and S.T. Purcell, Phys. Rev. B 77, 165434 (2008).CrossRefGoogle Scholar
  8. 8.
    J.B. Casady and R.W. Johnson, Solid State Electron. 39, 1409 (1996).CrossRefGoogle Scholar
  9. 9.
    M. Kim, I. Oh, and J. Kim, J. Mater. Chem. A 3, 3944 (2015).CrossRefGoogle Scholar
  10. 10.
    Z. Wang, J. Lee, and P.X.-L. Feng, Nat. Commun. 5, 5158 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Trinchi, S. Kandasamy, and W. Wlodarski, Sens. Actuators. B Chem. 133, 705 (2008).Google Scholar
  12. 12.
    S. Duman, E. Gür, S. Doǧan, and S. Tüzemen, Curr. Appl. Phys. 9, 1181 (2009).CrossRefGoogle Scholar
  13. 13.
    J. Cai, X. Chen, R. Hong, W. Yang, and Z. Wu, Opt. Commun. 333, 182 (2014).CrossRefGoogle Scholar
  14. 14.
    C.R.S. da Silva, J.F. Justo, and I. Pereyra, Appl. Phys. Lett. 84, 4845 (2004).CrossRefGoogle Scholar
  15. 15.
    X. Guo, Y. Zhang, B. Fan, and J. Fan, Appl. Phys. Lett. 110, 123104 (2017).CrossRefGoogle Scholar
  16. 16.
    D. Dai, X. Guo, and J. Fan, Appl. Phys. Lett. 106, 053115 (2015).CrossRefGoogle Scholar
  17. 17.
    X.L. Wu, J.Y. Fan, T. Qiu, X. Yang, G.G. Siu, and P.K. Chu, Phys. Rev. Lett. 94, 026102 (2005).CrossRefGoogle Scholar
  18. 18.
    S. Castelletto, B.C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, and A. Gali, ACS Nano 8, 7938 (2014).CrossRefGoogle Scholar
  19. 19.
    A. Kassiba, M. Makowska-Janusik, J. Bouclé, J.F. Bardeau, A. Bulou, and N. Herlin-Boime, Phys. Rev. B 66, 155317 (2002).CrossRefGoogle Scholar
  20. 20.
    K.M. Lee, J.Y. Hwang, B. Urban, A. Singh, A. Neogi, S.K. Lee, and T.Y. Choi, Solid State Commun. 204, 16 (2015).CrossRefGoogle Scholar
  21. 21.
    S.J. Xu, M.B. Yu, S.F. Yoon, and C.M. Che, Appl. Phys. Lett. 76, 2550 (2000).CrossRefGoogle Scholar
  22. 22.
    S. Askari, A. Ul Haq, M. Macias-Montero, I. Levchenko, F. Yu, W. Zhou, K. Ostrikov, P. Maguire, V. Svrcek, and D. Mariotti, Nanoscale 8, 17141 (2016).CrossRefGoogle Scholar
  23. 23.
    T.V. Torchynska, A.D. Cano, S.J. Sandoval, M. Dybic, S. Ostapenko, and M. Mynbaeva, Microelectronics J. 36, 536 (2005).CrossRefGoogle Scholar
  24. 24.
    R.J. Baierle and R.H. Miwa, Phys. Rev. B 76, 1 (2007).CrossRefGoogle Scholar
  25. 25.
    S. Mourya, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, J. Appl. Phys. 123, 023109 (2018).CrossRefGoogle Scholar
  26. 26.
    T.V. Torchynska, A. Díaz Cano, M. Dybic, S. Ostapenko, and M. Mynbaeva, Phys. B 376–377, 367 (2006).CrossRefGoogle Scholar
  27. 27.
    J.A. Powell, D.J. Larkin, L.G. Matus, W.J. Choyke, J.L. Bradshaw, L. Henderson, M. Yoganathan, J. Yang, and P. Pirouz, Appl. Phys. Lett. 56, 1353 (1990).CrossRefGoogle Scholar
  28. 28.
    J.A.J. Cooper, Mater. Sci. Eng. B 44, 387 (1997).CrossRefGoogle Scholar
  29. 29.
    D.H. Nam, B.G. Kim, J.Y. Yoon, M.H. Lee, W.S. Seo, S.M. Jeong, C.W. Yang, and W.J. Lee, Cryst. Growth Des. 14, 5569 (2014).CrossRefGoogle Scholar
  30. 30.
    G. Chung and K. Kim, J. Korean Phys. Soc. 51, 1389 (2007).CrossRefGoogle Scholar
  31. 31.
    J. Jaiswal, S. Mourya, G. Malik, and R. Chandra, J. Opt. Soc. Am. A 35, 740 (2018).CrossRefGoogle Scholar
  32. 32.
    J. Jaiswal, S. Mourya, G. Malik, S. Chauhan, R. Daipuriya, M. Singh, and R. Chandra, JOM 69, 2383 (2017).CrossRefGoogle Scholar
  33. 33.
    M. Ohtsuka, H. Takeuchi, and H. Fukuyama, Jpn. J. Appl. Phys. 55, 05FD08 (2016).CrossRefGoogle Scholar
  34. 34.
    M. Kumar, R. Chandra, R. Mishra, R.K. Tiwari, and A.K. Saxena, AIP Conf. Proc. 1451, 260 (2012).Google Scholar
  35. 35.
    M. Ohring, Materials Science of Thin Films, 2nd ed. (New York: Elsevier, 2002).Google Scholar
  36. 36.
    J. Jaiswal, S. Mourya, G. Malik, S. Chauhan, A. Sanger, R. Daipuriya, M. Singh, and R. Chandra, Appl. Opt. 55, 8368 (2016).CrossRefGoogle Scholar
  37. 37.
    J. Jaiswal, A. Sanger, A. Kumar, S. Mourya, S. Chauhan, R. Daipuriya, M. Singh, and R. Chandra, Adv. Mater. Lett. 7, 485 (2016).CrossRefGoogle Scholar
  38. 38.
    A. Purohit, S. Chander, A. Sharma, S.P. Nehra, and M.S. Dhaka, Opt. Mater. 49, 51 (2015).CrossRefGoogle Scholar
  39. 39.
    R. Huang, Y. Du, A. Ji, and Z. Cao, Opt. Mater. 35, 2414 (2013).CrossRefGoogle Scholar
  40. 40.
    D. Beke, Z. Szekrényes, Z. Czigány, K. Kamarás, and Á. Gali, Nanoscale 7, 10982 (2015).CrossRefGoogle Scholar
  41. 41.
    H.W. Backes, A.P. Bobbert, and W. van Haeringen, Phys. Rev. B 49, 7564 (1994).CrossRefGoogle Scholar
  42. 42.
    J. Chen, W. Tang, L. Xin, and Q. Shi, Appl. Phys. A Mater. Sci. Process. 102, 213 (2011).CrossRefGoogle Scholar
  43. 43.
    T. Ma, J. Xu, J. Du, W. Li, X. Huang, and K. Chen, J. Appl. Phys. 88, 6408 (2000).CrossRefGoogle Scholar
  44. 44.
    W. Yu, X. Wang, C. Geng, X. Lve, W. Lu, and G. Fu, Appl. Surf. Sci. 258, 1733 (2011).CrossRefGoogle Scholar
  45. 45.
    L. Tsybeskov, J.V. Vandyshev, and P.M. Fauchet, Phys. Rev. B 49, 7821 (1994).CrossRefGoogle Scholar
  46. 46.
    E. Sörman, N. Son, W. Chen, O. Kordina, C. Hallin, and E. Janzén, Phys. Rev. B 61, 2613 (2000).CrossRefGoogle Scholar
  47. 47.
    X.L. Wu, S.J. Xiong, G.G. Siu, G.S. Huang, Y.F. Mei, Z.Y. Zhang, S.S. Deng, and C. Tan, Phys. Rev. Lett. 91, 157402 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Satyendra Mourya
    • 1
    • 2
  • Jyoti Jaiswal
    • 1
  • Gaurav Malik
    • 1
  • Brijesh Kumar
    • 2
  • Ramesh Chandra
    • 1
    Email author
  1. 1.Thin film LaboratoryInstitute Instrumentation Centre, Indian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations