Advertisement

Journal of Electronic Materials

, Volume 47, Issue 9, pp 5296–5301 | Cite as

Electrical Properties of a pn Heterojunction of Li-Doped NiO and Al-Doped ZnO for Thermoelectrics

  • Temesgen D. Desissa
  • Matthias Schrade
  • Truls NorbyEmail author
Article
  • 117 Downloads

Abstract

The electrical properties of a pn heterojunction of polycrystalline p-type Ni0.98Li0.02O and n-type Zn0.98Al0.02O have been investigated for potential applications in high-temperature oxide-based thermoelectric generators without metallic interconnects. Current–voltage characteristics of the junction were measured in a two-electrode setup in ambient air at 500–1000°C. The resistance and rectification of the junction decreased with increasing temperature. A non-ideal Shockley diode model was used to fit the measured current–voltage data in order to extract characteristic parameters of the junction, such as area-specific series resistance Rs and parallel shunt resistance Rp, non-ideality factor, and the saturation current density. Rs and Rp decreased exponentially with temperature, with activation energies of 0.4 ± 0.1 eV and 1.1 ± 0.2 eV, respectively. The interface resistance of the direct pn junction studied here is as such too high for practical applications in thermoelectrics. However, it is demonstrated that it can be reduced by an order of magnitude by using a composite of the individual materials at the interface, yielding a large effective contact area.

Keywords

Li-doped NiO Al-doped ZnO pn junction composite oxide thermoelectrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the Research Council of Norway (RCN) for financial support under the THELMA Project (228854) through the “Nano2021” program. We acknowledge A.E. Chatzitakis (Dept. Chemistry, Univ. Oslo) for support on the Mott-Schottky capacitance measurement and C. Zimmermann (Dept. Physics, Univ. Oslo) for writing the Python script for fitting to the Shockley diode model.

References

  1. 1.
    T.J. Seebeck, Ann. Phys. 82, 253 (1826).CrossRefGoogle Scholar
  2. 2.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  3. 3.
    J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).CrossRefGoogle Scholar
  4. 4.
    G. Span, M. Wagner, T. Grasser, and L. Holmgren, Phys. Status Solidi-R 1, 241 (2007).CrossRefGoogle Scholar
  5. 5.
    A. Becker, R. Chavez, N. Petermann, G. Schierning, and R. Schmechel, J. Electron. Mater. 42, 2297 (2013).CrossRefGoogle Scholar
  6. 6.
    W. Shin, N. Murayama, K. Ikeda, and S. Sago, J. Power Sources 103, 80 (2001).CrossRefGoogle Scholar
  7. 7.
    S. Woosuck, M. Norimitsu, I. Koichiro, and S. Sumihito, Jpn. J. Appl. Phys. 39, 1254 (2000).CrossRefGoogle Scholar
  8. 8.
    S. Lany, J. Osorio-Guillén, and A. Zunger, Phys. Rev. B 75, 241203 (2007).CrossRefGoogle Scholar
  9. 9.
    R.R. Heikes and W.D. Johnston, J. Chem. Phys. 26, 582 (1957).CrossRefGoogle Scholar
  10. 10.
    M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).CrossRefGoogle Scholar
  11. 11.
    M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).CrossRefGoogle Scholar
  12. 12.
    T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 85 (1997).CrossRefGoogle Scholar
  13. 13.
    P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T. Borca-Tasciuc, S.X. Dou, and G. Ramanath, Nano Lett. 11, 4337 (2011).CrossRefGoogle Scholar
  14. 14.
    W. Shin and N. Murayama, Jpn. J. Appl. Phys. 38, L1336 (1999).CrossRefGoogle Scholar
  15. 15.
    W. Shin and N. Murayama, Mater. Lett. 45, 302 (2000).CrossRefGoogle Scholar
  16. 16.
    C.H. Bates, W.B. White, and R. Roy, J. Inorg. Nucl. Chem. 28, 397 (1966).CrossRefGoogle Scholar
  17. 17.
    D.-S. Sinn, Solid State Ion. 83, 333 (1996).CrossRefGoogle Scholar
  18. 18.
    T.D. Desissa, R. Haugsrud, K. Wiik, and T. Norby, Solid State Ion. 320, 215 (2018).CrossRefGoogle Scholar
  19. 19.
    B. Ifland, P. Peretzki, B. Kressdorf, P. Saring, A. Kelling, M. Seibt, and C. Jooss, Beilstein J. Nanotechnol. 6, 1467 (2015).CrossRefGoogle Scholar
  20. 20.
    R.L. Anderson, Solid State Electron. 5, 341 (1962).CrossRefGoogle Scholar
  21. 21.
    A. Cuevas, Enrgy Proced. 55, 53 (2014).CrossRefGoogle Scholar
  22. 22.
    C. Papadopoulos, In Solid-State Electronic Devices: An Introduction, (Springer, New York, 2014), pp. 11–80.Google Scholar
  23. 23.
    W. Shockley, Bell Syst. Tech. J. 28, 435 (1949).CrossRefGoogle Scholar
  24. 24.
    M. Grundmann, R. Karsthof, and H. von Wenckstern, ACS Appl. Mater. Interfaces 6, 14785 (2014).CrossRefGoogle Scholar
  25. 25.
    Z.-F. Shi, T.-T. Xu, D. Wu, Y.-T. Zhang, B.-L. Zhang, Y.-T. Tian, X.-J. Li, and G.-T. Du, Nanoscale 8, 9997 (2016).CrossRefGoogle Scholar
  26. 26.
    D. Bozyigit, W.M.M. Lin, N. Yazdani, O. Yarema, and V. Wood, Nat. Commun. 6, 6180 (2015).CrossRefGoogle Scholar
  27. 27.
    X. Yu, X. Shen, X. Mu, J. Zhang, B. Sun, L. Zeng, L. Yang, Y. Wu, H. He, and D. Yang, Sci. Rep. 5, 17371 (2015).CrossRefGoogle Scholar
  28. 28.
    Z. Jin, A. Wang, Q. Zhou, Y. Wang, and J. Wang, Sci. Rep. 6, 37106 (2016).CrossRefGoogle Scholar
  29. 29.
    G. Eneman, M. Wiot, A. Brugere, O.S.I. Casain, S. Sonde, D.P. Brunco, B. De Jaeger, A. Satta, G. Hellings, and K. De Meyer, IEEE Trans. Electron. Dev. 55, 2287 (2008).CrossRefGoogle Scholar
  30. 30.
    C.-E. Sun, C.-Y. Chen, K.-L. Chu, Y.-S. Shen, C.-C. Lin, and Y.-H. Wu, ACS Appl. Mater. Interfaces 7, 6383 (2015).CrossRefGoogle Scholar
  31. 31.
    J. Yu, K.M. Rosso, and S.M. Bruemmer, J. Phys. Chem. C 116, 1948 (2012).CrossRefGoogle Scholar
  32. 32.
    J.G. Aiken and A.G. Jordan, J. Phys. Chem. Solids 29, 2153 (1968).CrossRefGoogle Scholar
  33. 33.
    M.B. Dutt, R. Banerjee, and A.K. Barua, Phys. Status Solidi (a) 65, 365 (1981).CrossRefGoogle Scholar
  34. 34.
    R. Chavez, S. Angst, J. Hall, F. Maculewicz, J. Stoetzel, H. Wiggers, L.T. Hung, N.V. Nong, N. Pryds, G. Span, D.E. Wolf, R. Schmechel, and G. Schierning, J. Phys. D Appl. Phys. 51, 014005 (2018).CrossRefGoogle Scholar
  35. 35.
    U. Kwon, B.-G. Kim, D.C. Nguyen, J.-H. Park, N.Y. Ha, S.-J. Kim, S.H. Ko, S. Lee, D. Lee, and H.J. Park, Sci. Rep. 6, 30759 (2016).CrossRefGoogle Scholar
  36. 36.
    H. Moormann, D. Kohl, and G. Heiland, Surf. Sci. 80, 261 (1979).CrossRefGoogle Scholar
  37. 37.
    H.J. Goldsmid, In Introduction to Thermoelectricity, (Springer, Berlin, 2016), pp. 197–220.Google Scholar
  38. 38.
    R. Chavez, S. Angst, J. Hall, J. Stoetzel, V. Kessler, L. Bitzer, F. Maculewicz, N. Benson, H. Wiggers, D. Wolf, G. Schierning, and R. Schmechel, J. Electron. Mater. 43, 2376 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Centre for Materials Science and NanotechnologyUniversity of Oslo, FERMiOOsloNorway
  2. 2.Department of Physics, Centre for Materials Science and NanotechnologyUniversity of Oslo, FERMiOOsloNorway

Personalised recommendations