Journal of Electronic Materials

, Volume 47, Issue 9, pp 5229–5242 | Cite as

Critical Evaluation of Relative Importance of Stress and Stress Gradient in Whisker Growth in Sn Coatings

  • Piyush Jagtap
  • Vijay A. Sethuraman
  • Praveen Kumar


The role of stress state and stress gradient in whisker growth in Sn coatings electrodeposited on brass is examined. The bulk stress in Sn coatings was measured using a laser-optics-based curvature setup, whereas glancing angle x-ray diffraction was employed to quantify the stress near the surface; this also allowed studying the role of the out-of-plane stress gradient in whisker growth. Both bulk stress and near-surface stress in the Sn coating evolved with time, wherein both were compressive immediately after the deposition, and thereafter while the bulk stress monotonically became more compressive and subsequently saturated with aging at room temperature, the stress near the surface of the Sn coating continually became more tensile with aging. These opposing evolutionary behaviors of bulk and near-surface stresses readily reveals establishment of a negative out-of-plane stress gradient, which is required for the spontaneous growth of whiskers. The importance of the out-of-plane stress gradient was also validated by externally imposing widely different stress states and stress gradients in Sn coatings using a 3-point bending apparatus. Additional whisker growth occurred in the coatings subjected to external tensile stress; however, this was accompanied by a higher negative out-of-plane stress gradient. The results conclusively demonstrate the important role of the negative out-of-plane stress gradient on whisker growth, as compared to only sign and magnitude of stress.


Curvature measurement Sn whiskers stress gradient stress state XRD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Leidecker and J. Brusse, Tin whiskers: a history of documented electrical system failures (2006). Online at:
  2. 2.
    R.M. Fisher, L.S. Darken, and K.G. Carroll, Acta Metall. Mater. 2, 368 (1954).CrossRefGoogle Scholar
  3. 3.
    V.K. Glazunova and N.T. Kudryavtsev, Translated from Zhurnal Prikladnoi Khimii 36, 543 (1963).Google Scholar
  4. 4.
    U. Lindborg, Metall. Trans. A 6, 1581 (1975).CrossRefGoogle Scholar
  5. 5.
    C.H. Pitt and R.G. Henning, J. Appl. Phys. 35, 459 (1964).CrossRefGoogle Scholar
  6. 6.
    M. Sobiech, M. Wohlschlögel, U. Welzel, E.J. Mittemeijer, W. Hügel, A. Seekamp, W. Liu, and G.E. Ice, Appl. Phys. Lett. 94, 221901 (2009).CrossRefGoogle Scholar
  7. 7.
    K.N. Tu, Acta Metall. 21, 347 (1973).CrossRefGoogle Scholar
  8. 8.
    C. Xu, Y. Zhang, C. Fan, A. Vysotskaya, J. Abys, L. Hopkins, and N.F. Stevie, in Proc. AESF SUR/FIN Conf., Jun. 2001.Google Scholar
  9. 9.
    R. Schetty, N. Brown, A. Egli, J. Heber, and A. Vinckler, in Proc. AESF SUR/FIN Conf., (2001) 1.Google Scholar
  10. 10.
    B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).CrossRefGoogle Scholar
  11. 11.
    S. Lal and T.D. Moyer, IEEE Trans. Electron. Packag. Manuf. 28, 63 (2005).CrossRefGoogle Scholar
  12. 12.
    U. Welzel and E.J. Mittemeijer, in Defect and Diffusion Forum, Trans Tech Publications 264 (2007) 71Google Scholar
  13. 13.
    M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hügel, and A. Seekamp, Appl. Phys. Lett. 93, 011906-1-3. (2008).CrossRefGoogle Scholar
  14. 14.
    W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 305033 (2005).CrossRefGoogle Scholar
  15. 15.
    K. Chen and G.D. Wilcox, Phys. Rev. Lett. 94, 066104 (2005).CrossRefGoogle Scholar
  16. 16.
    E. Chason, L. Reinbold, and S. Kumar, in MRS Proc., Cambridge University Press, 851 (2004) NN5171Google Scholar
  17. 17.
    E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).CrossRefGoogle Scholar
  18. 18.
    E. Chason, N. Jadhav, and F. Pei, JOM 63, 62 (2011).CrossRefGoogle Scholar
  19. 19.
    N. Jadhav, J. Wasserman, F. Pei, and E. Chason, J. Electron. Mater. 41, 588 (2012).CrossRefGoogle Scholar
  20. 20.
    E. Chason and F. Pei, JOM 67, 2416 (2015).CrossRefGoogle Scholar
  21. 21.
    K.N. Tu and J.C. Li, Mater. Sci. Eng. A 409, 131 (2005).CrossRefGoogle Scholar
  22. 22.
    P. Su, M. Ding, and S. Chopin, in Proc. Electron. Comp. And Tech. Conf., (ECTC) (2005) 434–440Google Scholar
  23. 23.
    K.N. Tu, C. Chen, and A.T. Wu, J. Mater. Sci. Mater. Electron. 18, 269 (2007).Google Scholar
  24. 24.
    J. Liang, Z.H. Xu, and X. Li, J. Mater. Sci. Mater. Electron. 18, 599 (2007).CrossRefGoogle Scholar
  25. 25.
    V.K. Glazunova, Transl. Kristallografiya 7, 761 (1962).Google Scholar
  26. 26.
    B.D. Dunn, W.R. Burke, and B. Battrick, A laboratory study of tin whisker growth, European Space Agency (ESA) Rep. STR-223 (1987)Google Scholar
  27. 27.
    C. Xu, Y. Zhang, C. Fan, J. Abys, L. Hopkins, and F. Stevie, Circuit Tree (USA) 15, 10 (2002).Google Scholar
  28. 28.
    S.K. Lin, Y. Yorikado, J. Jiang, K.S. Kim, K. Suganuma, S.W. Chen, M. Tsujimoto, and I. Yanada, J. Mater. Res. 22, 1975 (2007).CrossRefGoogle Scholar
  29. 29.
    E.R. Crandall, G.T. Flowers, R. Jackson, P. Lall, and M.J. Bozack, in IEEE 57th Conference on Electrical Contacts, Holm (2011) 1Google Scholar
  30. 30.
    J. Cheng, Tin Whiskers in Electronic Packaging: Mechanism and Modeling, PhD thesis, University of Rochester (2011) 83.Google Scholar
  31. 31.
    P. Jagtap, Whisker Growth from Electrodeposited Sn Coatings- Developing Materials Science and Mechanics Based Insights, PhD thesis, Indian Institute of Science (2017)Google Scholar
  32. 32.
    J. A. Floro and E. Chason, in In-Situ Real-Time Characterization of Thin Films, Ed. O. Auciello and A. R. Krauss, John Wiley and Sons, Inc. (2001) 191Google Scholar
  33. 33.
    V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, and P.R. Guduru, J. Power Sources 195, 5062 (2010).CrossRefGoogle Scholar
  34. 34.
    J.L. Beuth, Int. J. Solids Structures 29, 1657 (1992).CrossRefGoogle Scholar
  35. 35.
    W.D. Nix, Mechanical properties of thin films, Lecture notes (2005) Available online at:
  36. 36.
    U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer, J. Appl. Crystallogr. 38, 1 (2005).CrossRefGoogle Scholar
  37. 37.
    A. Kumar, U. Welzel, and E.J. Mittemeijer, J. Appl. Crystallogr. 39, 633 (2006).CrossRefGoogle Scholar
  38. 38.
    B. D. Cullity, Elements of x-ray Diffraction, Add1son-Wesley Publishing Company, Inc. (1956) 466.Google Scholar
  39. 39.
    Y.C. Cheng, Y.T. Wang, F.C. Hsu, F.C. Lu, C.L. Wu, and M.T. Lin, J. Electron. Mater. 44, 604 (2015).CrossRefGoogle Scholar
  40. 40.
    W.F. Gale and T.C. Totemeier, eds., Smithells metals reference book (Oxford: Butterworth-Heinemann, 2003), p. 1373.Google Scholar
  41. 41.
    P. Jagtap and P. Kumar, J. Electron. Mater. 44, 1206 (2015).CrossRefGoogle Scholar
  42. 42.
    J.W. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, R.L. Shook, and F.A. Baiocchi, IEEE Trans. Electron. Packag. Manuf. 30, 23 (2007).CrossRefGoogle Scholar
  43. 43.
    M.A. Ashworth, G.D. Wilcox, R.L. Higginson, R.J. Heath, and C. Liu, J. Electron. Mater. 43, 1005 (2014).CrossRefGoogle Scholar
  44. 44.
    S.C. Britton and M. Clarke, Trans. Inst. Metal Finish. 40, 205 (1964).CrossRefGoogle Scholar
  45. 45.
    F. Han, W.C. Li, C. Lei, B. He, K. Oshida, and A.H. Lu, Small 10, 2637 (2014).CrossRefGoogle Scholar
  46. 46.
    E. Bradley, C.A. Handwerker, J. Bath, R.D. Parker, and R.W. Gedney, Lead-free electronics: iNEMI projects lead to successful manufacturing, John Wiley & Sons (2007) 305.Google Scholar
  47. 47.
    Y. Wang, J.E. Blendell, and C.A. Handwerker, J. Mater. Sci. 49, 1099 (2014).CrossRefGoogle Scholar
  48. 48.
    W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowell, Y.Y. Bong, and L. Nguyen, Acta Mater. 51, 6253 (2003).CrossRefGoogle Scholar
  49. 49.
    F. Pei, N. Jadhav, E. Buchovecky, A.F. Bower, E. Chason, W. Liu, J.Z. Tischler, G.E. Ice, and R. Xu, J. Appl. Phys. 119, 105302 (2016).CrossRefGoogle Scholar
  50. 50.
    P. Jagtap, A. Chakraborty, P. Eisenlohr, and P. Kumar, Acta Mater. 134, 346 (2017).CrossRefGoogle Scholar
  51. 51.
    H.P. Kehrer and H.G. Kadereit, Appl. Phys. Lett. 16, 411 (1970).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Piyush Jagtap
    • 1
  • Vijay A. Sethuraman
    • 1
  • Praveen Kumar
    • 1
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations