Journal of Electronic Materials

, Volume 47, Issue 8, pp 4508–4514 | Cite as

Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO2

  • H. Ates
  • S. Bolat
  • F. Oruc
  • A. K. Okyay
Topical Collection: Electronic Materials for Renewable Energy Applications
Part of the following topical collections:
  1. 5th European Conference on Renewable Energy Systems


Metal oxides are attractive for thin film optoelectronic applications. Due to their wide energy bandgaps, ZnO and TiO2 are being investigated by many researchers. Here, we have studied the electrical and optical properties of ZnO and TiO2 as a function of deposition and post-annealing conditions. Atomic layer deposition (ALD) is a novel thin film deposition technique where the growth conditions can be controlled down to atomic precision. ALD-grown ZnO films are shown to exhibit tunable optical absorption properties in the visible and infrared region. Furthermore, the growth temperature and post-annealing conditions of ZnO and TiO2 affect the electrical properties which are investigated using ALD-grown metal oxide as the electron transport channel on thin film field-effect devices.


Zinc oxide titanium oxide atomic layer deposition thin film transistor semiconductor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Doyoung, K. Hiyemin, K. Jae-Min, and K. Huyungjun, Appl. Surf. Sci. 257, 7906 (2011).CrossRefGoogle Scholar
  2. 2.
    N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, Appl. Phys. Lett. 92, 023502 (2008).CrossRefGoogle Scholar
  3. 3.
    E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater. 17, 590 (2005).CrossRefGoogle Scholar
  4. 4.
    E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, Thin Solid Films 487, 205 (2005).CrossRefGoogle Scholar
  5. 5.
    R.L. Hoffman, B.J. Norris, and J.F. Wager, Appl. Phys. Lett. 82, 733 (2003).CrossRefGoogle Scholar
  6. 6.
    Y. Kawamura, M. Horita, and Y. Ishikawa, in AM-FPD 19th International Workshop (2012)Google Scholar
  7. 7.
    P.F. Carcia, R.S. McLean, M.H. Reilly, and G. Nunes Jr., Appl. Phys. Lett. 82, 1117 (2003).CrossRefGoogle Scholar
  8. 8.
    L.E. Aygun, F.B. Oruc, F.B. Atar, and A.K. Okyay, IEEE Photonics J. 5, 2200707 (2013).CrossRefGoogle Scholar
  9. 9.
    O. Akira and T. Atsushi, Semicond. Sci. Technol. 20, S1 (2005).CrossRefGoogle Scholar
  10. 10.
    M.D. Barankin, E. Gonzalez Ii, A.M. Ladwig, and R.F. Hicks, Sol. Energy Mater. Sol. Cells 91, 924 (2007).CrossRefGoogle Scholar
  11. 11.
    J.B. Lee, H.J. Kim, S.G. Kim, C.S. Hwang, S.H. Hong, Y.H. Shin, and N.H. Lee, Thin Solid Films 435, 179 (2003).CrossRefGoogle Scholar
  12. 12.
    J.H. Lee, K.-H. Ko, and B.-O. Park, J. Cryst. Growth 247, 119 (2003).CrossRefGoogle Scholar
  13. 13.
    K. Semyung, B. Seokhwan, L. Seungjun, J. Sunyeol, J. Wooho, K. Hyungchu, C.G. Su, J.C. Ho, P. Hyung-ho, and J. Hyeongtag, Semicond. Sci. Technol. 24, 035015 (2009).CrossRefGoogle Scholar
  14. 14.
    K. Jae-Hong, S. Jung-Hoon, S. Sang-I, and J. Byeong-Kwon, J. Phys. D Appl. Phys. 42, 065105 (2009).CrossRefGoogle Scholar
  15. 15.
    E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, R.F.P. Martins, and L.M.N. Pereira, Appl. Phys. Lett. 85, 2541 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. 93, 1624 (2003).CrossRefGoogle Scholar
  17. 17.
    J. Siddiqui, E. Cagin, D. Chen, and J.D. Philips, Appl. Phys. Lett. 88, 212903 (2006).CrossRefGoogle Scholar
  18. 18.
    A.K. Okyay, F.B. Oruç, F. Cimen, and L.E. Aygün, Proc. SPIE 8626, 16 (2013).Google Scholar
  19. 19.
    W.S. Shih, S.J. Young, L.W. Ji, W. Water, and H.W. Shiu, J. Electrochem. Soc. 158, 609 (2011).CrossRefGoogle Scholar
  20. 20.
    W.S. Shih, S.J. Young, L.W. Ji, W. Water, T.H. Meen, K.T. Lam, J. Sheen, and W.C. Chu, J. Phys. Chem. Solids 71, 1760 (2010).CrossRefGoogle Scholar
  21. 21.
    M. Katayama, S. Ikesaka, J. Kuwano, Y. Yamamoto, and H. Koinuma, Appl. Phys. Lett. 89, 242103 (2006).CrossRefGoogle Scholar
  22. 22.
    J.W. Park, D. Lee, H. Kwon, S. Yoo, and J. Huh, IEEE Electron Dev. Lett. 30, 739 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Katayama, S. Ikesaka, J. Kuwano, H. Koinuma, and Y. Matsumoto, Appl. Phys. Lett. 92, 132107 (2008).CrossRefGoogle Scholar
  24. 24.
    J.W. Park, S.W. Han, N. Jeon, J. Jang, and S. Yoo, IEEE Electron Dev. Lett. 29, 0741 (2008).Google Scholar
  25. 25.
    F. Oruc, L. Aygun, I. Donmez, N. Biyikli, A.K. Okyay, and H. Yong Yu, J. Vac. Sci. Technol. A 33, 01A105 (2015).CrossRefGoogle Scholar
  26. 26.
    Y. Kim, J. Koo, J. Han, S. Choi, H. Jeon, and C. Park, J. Appl. Phys. 92, 5443 (2002).CrossRefGoogle Scholar
  27. 27.
    N. El-Atab, A. Ozcan, S. Alkis, A.K. Okyay, and A. Nayfeh, Appl. Phys. Lett. 104, 013112 (2014).CrossRefGoogle Scholar
  28. 28.
    K. Jaehyoung, L. Janghee, K. Seokhoon, K. Youngdo, J. Hyeongtag, K. Deoksoo, and K. Yangdo, J. Korean Phys. Soc. 47, 501 (2005).Google Scholar
  29. 29.
    M.J. Biercuk, D.J. Monsma, C.M. Marcus, C.S. Becker, and R.G. Appl, Phys. Lett. 83, 2405 (2003).Google Scholar
  30. 30.
    T. Krajewski, E. Guziewicz, M. Godlewski, L. Wachnicki, I.A. Kowalik, A. Wojcik-Glodowska, M. Lukasiewicz, K. Kopalko, V. Osinniy, and M. Guziewicz, Microelectron. J. 40, 293 (2009).CrossRefGoogle Scholar
  31. 31.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Superlattices Microstruct. 34, 3 (2003).CrossRefGoogle Scholar
  32. 32.
    U. Ozgur, Y.I. Alivov, C. Lui, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041103 (2005).CrossRefGoogle Scholar
  33. 33.
    C. Klingshirn, Phys. Status Solidi (B) 244, 3019 (2007).CrossRefGoogle Scholar
  34. 34.
    C. Shi, K. Xiang, Y. Zhu, X. Chen, W. Zhou, and H. Chen, Electrochim. Acta 246, 1088 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials Engineering, Faculty of TechnologyGazi UniversityAnkaraTurkey
  2. 2.Department of Electrical and Electronics Engineering, UNAM - National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
  3. 3.Okyay Tech.YenimahalleTurkey

Personalised recommendations