Journal of Electronic Materials

, Volume 47, Issue 9, pp 5068–5071 | Cite as

Phosphorus Diffusion Gettering Efficacy in Upgraded Metallurgical-Grade Solar Silicon

  • A. Jiménez
  • C. del Cañizo
  • C. Cid
  • A. Peral
Topical Collection: 17th Conference on Defects (DRIP XVII)
Part of the following topical collections:
  1. 17th Conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP XVII)


In the context of the continuous price reduction in photovoltaics (PV) in recent years, Si feedstock continues to be a relevant component in the cost breakdown of a PV module, highlighting the need for low-cost, low-capital expenditure (CAPEX) silicon technologies to further reduce this cost component. Upgraded metallurgical-grade silicon (UMG Si) has recently received much attention, improving its quality and even attaining, in some cases, solar cell efficiencies similar to those of conventional material. However, some technical challenges still have to be addressed when processing this material to compensate efficiently for the high content of impurities and contaminants. Adaptation of a conventional solar cell process to monocrystalline UMG Si wafers has been studied in this work. In particular, a tailored phosphorus diffusion gettering step followed by a low-temperature anneal at 700°C was implemented, resulting in enhanced bulk lifetime and emitter recombination properties. In spite of the need for further research and material optimization, UMG Si wafers were successfully processed, achieving efficiencies in the range of 15% for a standard laboratory solar cell process with aluminum back surface field.


UMG silicon gettering phosphorus diffusion low-temperature annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Wagner, A. Dastgheib-Shirazi, B. Min, A.E. Morishige, M. Steyer, G. Hahn, C. del Cañizo, T. Buonassisi, and P.P. Altermatt, J. Appl. Phys. 119, 185704 (2016).CrossRefGoogle Scholar
  2. 2.
    M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y.P.B. Mouafi, D. Borchert, and A. Montesdeoca-Santana, Prog. Photovolt. Res. Appl. 19, 165 (2011).CrossRefGoogle Scholar
  3. 3.
    M.D. Pickett and T. Buonassisi, Appl. Phys. Lett. 92, 122103 (2008).CrossRefGoogle Scholar
  4. 4.
    J. Hofstetter, J.F. Lelièvre, C. del Cañizo, and A. Luque, Solid State Phenom. 156, 387 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Peral, A. Dastgheib-Shirazi, H. Wagner, G. Hahn, and C. Del Cañizo, Energy Procedia 77, 311 (2015).CrossRefGoogle Scholar
  6. 6.
    B. Ceccaroli, E. Øvrelid, and S. Pizzini, Solar Silicon Processes: Technologies, Challenges, and Opportunities (Boca Raton: Taylor & Francis, 2017).Google Scholar
  7. 7.
    P. Engelhart, J. Wendt, A. Schulze, C. Klenke, A. Mohr, K. Petter, F. Stenzel, S. Hörnlein, M. Kauert, M. Junghänel, B. Barkenfelt, S. Schmidt, D. Rychtarik, M. Fischer, J.W. Müller, and P. Wawer, Energy Procedia 8, 313 (2011).CrossRefGoogle Scholar
  8. 8.
    D. Kohler, B. Raabe, S. Braun, S. Seren, and G. Hahn, in 24th European Photovoltaic Solar Energy Conference (2009), pp. 1758–1761.Google Scholar
  9. 9.
    J. Kraiem, B. Drevet, F. Cocco, N. Enjalbert, S. Dubois, D. Camel, D. Grosset-Bourbange, D. Pelletier, T. Margaria, and R. Einhaus, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010), pp. 1427–1431.Google Scholar
  10. 10.
    P. Zheng, F.E. Rougieux, C. Samundsett, X. Yang, Y. Wan, J. Degoulange, R. Einhaus, P. Rivat, and D. Macdonald, Appl. Phys. Lett. 108, 122103 (2016).CrossRefGoogle Scholar
  11. 11.
    D. Macdonald and A. Cuevas, Appl. Phys. Lett. 74, 1710 (1999).CrossRefGoogle Scholar
  12. 12.
    D.E. Kane and R. M. Swanson, in Proceeding of the 18th IEEE Photovoltaic Specialists Conference (1985), pp. 578–583.Google Scholar
  13. 13.
    J. Alonso, PhD Thesis: “Contribución a la mejora de células solares de silicio,” Universidad Politécnica de Madrid (1998).Google Scholar
  14. 14.
    D.H. Macdonald, L.J. Geerligs, and A. Azzizi, J. Appl. Phys. 95, 1021 (2004).CrossRefGoogle Scholar
  15. 15.
    A.G. Aberle, Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis (Centre for Photovoltaic Engineering) (Sydney: University of NSW, 2004).Google Scholar
  16. 16.
    L.C. Kimerling and J.L. Benton, Phys. B C 116, 297 (1983).CrossRefGoogle Scholar
  17. 17.
    A. Dastgheib-Shirazi, A. Peral, M. Steyer, J. Rinder, H. Wagner, and G. Hahn, Energy Procedia 77, 286 (2015).CrossRefGoogle Scholar
  18. 18.
    A. Peral, A. Youssef, A. Dastgheib-Shirazi, A. Austin, I.M. Peters, G. Hahn, T. Buonassisi, and C. del Cañizo, J. Appl. Phys. 123, 161535 (2018).CrossRefGoogle Scholar
  19. 19.
    A. Fell, IEEE Trans. Electron. Dev. 60, 733 (2013).CrossRefGoogle Scholar
  20. 20.
    D. MacDonald, F. Rougieux, A. Cuevas, B. Lim, J. Schmidt, M. Di Sabatino, and L.J. Geerligs, J. Appl. Phys. 105, 093704 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Instituto de Energía SolarUniversidad Politécnica de MadridMadridSpain

Personalised recommendations