Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 4190–4207 | Cite as

Parametric Study of Solder Flux Hygroscopicity: Impact of Weak Organic Acids on Water Layer Formation and Corrosion of Electronics

  • Kamila Piotrowska
  • Rameez Ud Din
  • Flemming Bjerg Grumsen
  • Morten Stendahl Jellesen
  • Rajan Ambat
Article

Abstract

The presence of solder flux residues on the printed circuit board assembly surface is an important factor contributing to humidity-related reliability issues that affect device lifetime. This investigation focuses on understanding the hygroscopic nature of typical wave solder flux activators—weak organic acids—under varied temperature conditions. In situ x-ray diffraction measurements assessed the effect of high temperature on the crystal structure of organic activators. The hygroscopicity studies were carried out under relative humidity (RH) levels varying from 30% to ∼ 99% and at temperatures 25°C, 40°C, and 60°C. Water absorption levels were determined using the gravimetric method, and the influence on reliability was assessed using electrochemical impedance and leak current measurements performed on the surface insulation resistance comb patterns. The corrosion studies were correlated with the hygroscopicity results and solubility data. Corrosion morphology was analysed using the optical microscopy and scanning electron microscopy. The results show that the hygroscopic nature of typical solder flux residue depends on its chemical structure and temperature. An increase of temperature shifts the critical RH level for water vapour absorption towards lower RH range, accelerating the formation of a conductive electrolyte and the occurrence of ion transport-induced electrochemical migration. The overall ranking of flux activators with the increasing order of aggressivity is: palmitic < suberic  < adipic < succinic < glutaric < dl-malic acid.

Keywords

Corrosion solder flux humidity hygroscopicity climatic reliability of electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.H. Manko, Solders and Soldering. Materials, Design, Production, and Analysis for Reliable Bonding, 2nd ed. (New York: McGraw-Hill, 1979).Google Scholar
  2. 2.
    C.J. Tautscher, Contamination Effects on Electronic Products (New York: CRC Press, 1991).Google Scholar
  3. 3.
    M. Nasta and H.C. Peebles, Circuit World 21, 4 (1995).CrossRefGoogle Scholar
  4. 4.
    J.F. Shipley, Weld. J. 54, 10 (1975).Google Scholar
  5. 5.
    R. Ambat, M.S. Jellesen, D. Minzari, U. Rathinavelu, M.A.K. Johnsen, P. Westermann, and P. Møller, in Proceedings of the European Corrosion Congress EUROCORR (2009), paper no. 81s1.Google Scholar
  6. 6.
    K. Piotrowska, M.S. Jellesen, and R. Ambat, Solder. Surf. Mt. Technol. 29, 3 (2017).CrossRefGoogle Scholar
  7. 7.
    M.L. Minges, Electronic Materials Handbook. Volume 1—Packaging, 1st ed. (Almere: ASM International, 1989).Google Scholar
  8. 8.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, J. Electron. Mater. 44, 4 (2015).CrossRefGoogle Scholar
  9. 9.
    K. Piotrowska, H. Conseil, M.S. Jellesen, and R. Ambat, in Proceedings of the European Corrosion Congress EUROCORR (2014), paper no. 7495.Google Scholar
  10. 10.
    S. Zhan, M.H. Azarian, and M. Pecht, IEEE Trans. Device Mater. Reliab. 8, 2 (2008).CrossRefGoogle Scholar
  11. 11.
    C. Peng, M.N. Chan, and C.K. Chan, Environ. Sci. Technol. 35, 22 (2001).CrossRefGoogle Scholar
  12. 12.
    M.Z.H. Rozaini, in Atmospheric Aerosols—Regional Characteristics—Chemistry and Physics, ed. by H. Abdul-Razzak (InTech, 2012), pp. 323–346Google Scholar
  13. 13.
    K.M. Adams, J.E. Anderson, and Y.B. Graves, Circuit World 20, 41 (1994).CrossRefGoogle Scholar
  14. 14.
    L. Van Campen, G.L. Amidon, and G. Zografi, J. Pharm. Sci. 72, 12 (1983).CrossRefGoogle Scholar
  15. 15.
    M.J. Kontny and G. Zografi, J. Pharm. Sci. 74, 2 (1985).CrossRefGoogle Scholar
  16. 16.
    M. Tencer, in 44th Electronic Components and Technology Conference Proceedings (1994), pp. 196–209Google Scholar
  17. 17.
    L.J. Mauer and M. Allan, Manuf. Confect. 95, 73 (2015).Google Scholar
  18. 18.
    L.J. Mauer and L.S. Taylor, Pharm. Dev. Technol. 15, 6 (2010).CrossRefGoogle Scholar
  19. 19.
    A.K. Salameh, L.J. Mauer, and L.S. Taylor, J. Food Sci. 71, 1 (2006).CrossRefGoogle Scholar
  20. 20.
    G.W. Warren, P. Wynblatt, and M. Zamanzadeh, J. Electron. Mater. 18, 2 (1989).CrossRefGoogle Scholar
  21. 21.
    J.D. Sinclair, J. Electrochem. Soc. 135, 3 (1988).CrossRefGoogle Scholar
  22. 22.
    S. Zhan, M.H. Azarian, and M.G. Pecht, IEEE Trans. Electron. Packag. Manuf. 29, 3 (2006).CrossRefGoogle Scholar
  23. 23.
    A.N. Hiatt, M.G. Ferruzzi, L.S. Taylor, and L.J. Mauer, J. Agric. Food Chem. 56, 15 (2008).CrossRefGoogle Scholar
  24. 24.
    L.J. Mauer and L.S. Taylor, Annu. Rev. Food Sci. Technol. 1, 1 (2010).CrossRefGoogle Scholar
  25. 25.
    A.H. Al-Muhtaseb, W.A.M. McMinn, and T.R.A. Magee, Food Bioprod. Process. 80, 2 (2002).CrossRefGoogle Scholar
  26. 26.
    L. Treuel, S. Schulze, Th. Leisner, and R. Zellner, Faraday Discuss. 137, 265 (2008).CrossRefGoogle Scholar
  27. 27.
    J.A. Jachim, G.B. Freeman, and L.J. Turbini, IEEE Trans. Components Packag. Manuf. Technol. Part B 20, 4 (1997).CrossRefGoogle Scholar
  28. 28.
    B.A. Smith and L.J. Turbini, J. Electron. Mater. 28, 11 (1999).Google Scholar
  29. 29.
    C. Dominkovics and G. Harsányi, in 29th International Spring Seminar on Electronics Technology: Nano Technologies for Electronics Packaging (2007), pp. 206–210Google Scholar
  30. 30.
    L. Zou and C. Hunt, Solder. Surf. Mt. Technol. 11, 2 (1999).Google Scholar
  31. 31.
    S. Canumalla, K. Ludwig, R. Pedigo, and T. Fitzgerald, in Proceedings—Electronic Components and Technology Conference (2006), pp. 625–632Google Scholar
  32. 32.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, Solder. Surf. Mt. Technol. 27, 4 (2015).CrossRefGoogle Scholar
  33. 33.
    J.E. Sohn and U. Ray, Circuit World 21, 4 (1995).CrossRefGoogle Scholar
  34. 34.
    Y. Zhou, L.J. Turbini, D. Ramjattan, B. Christian, and M. Pritzker, J. Electron. Mater. 42, 12 (2013).Google Scholar
  35. 35.
    Toxnet—Toxicology Data Network (U.S. National Library of Medicine). https://toxnet.nlm.nih.gov/
  36. 36.
    L.M. John and J.W. McBain, J. Am. Oil Chem. Soc. 25, 2 (1948).Google Scholar
  37. 37.
    I.D. Robb, Aust. J. Chem. 19, 12 (1966).CrossRefGoogle Scholar
  38. 38.
    S.H. Yalkowsky, Y. He, and P. Jain, Handbook of Aqueous Solubility Data, 2nd ed. (Boca Raton: CRC Press, 2010).CrossRefGoogle Scholar
  39. 39.
    V. Verdingovas, M.S. Jellesen, R. Rizzo, H. Conseil, and R. Ambat, in Proceedings of the European Corrosion Congress EUROCORR (2013)Google Scholar
  40. 40.
    A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 22, 3 (1990).Google Scholar
  41. 41.
    N.C. Hill and V.P. Kuceski, U.S. Patent 2,824,134 A (1958)Google Scholar
  42. 42.
    M. Davies and D.M.L. Griffiths, Trans. Faraday Soc. 49, 1405 (1953).CrossRefGoogle Scholar
  43. 43.
    A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 19, 3 (1986).Google Scholar
  44. 44.
    E.C. Attané and T.F. Doumani, Ind. Eng. Chem. 41, 9 (1949).CrossRefGoogle Scholar
  45. 45.
    A.N. Gaivoronskii and V.A. Granzhan, Russ. J. Appl. Chem. 78, 3 (2005).CrossRefGoogle Scholar
  46. 46.
    W.D. Bancroft and F.J.C. Butler, J. Phys. Chem. 36, 7 (1932).Google Scholar
  47. 47.
    J.W. Mullin, Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 1, eds. J. Ulrich and T. Stelzer (Hoboken: Wiley, 2001), pp. 1–594.Google Scholar
  48. 48.
    A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 21, 9 (1989).CrossRefGoogle Scholar
  49. 49.
    C. Marcolli, B. Luo, and T. Peter, J. Phys. Chem. A 108, 12 (2004).CrossRefGoogle Scholar
  50. 50.
    O.D. Kurilenko, Kratkii spravochnik po khimii, 4th ed. (Kiyv: Naukova dumka, 1974).Google Scholar
  51. 51.
    K. Piotrowska, R. Ud Din, M.S. Jellesen, and R. Ambat, IEEE Trans. Compon. Packag. Manuf. Technol. (2018).  https://doi.org/10.1109/tcpmt.2018.2792047.Google Scholar
  52. 52.
    J.T. Carstensen, Pharmaceutical Principles of Solid Dosage Forms (Lancaster: Technomic Pub, 1993).Google Scholar
  53. 53.
    L. Ma, B. Sood, and M. Pecht, IEEE Trans. Device Mater. Reliab. 11, 1 (2011).CrossRefGoogle Scholar
  54. 54.
    L.D. Angelo, V. Verdingovas, and L. Ferrero, in Proceedings of the European Corrosion Congress EUROCORR (2016)Google Scholar
  55. 55.
    H. Zhang, Ch. Xie, Z. Liu, J. Gong, Y. Bao, M. Zhang, H. Hao, B. Hou, and Q. Yin, Ind. Eng. Chem. Res. 52, 51 (2013).Google Scholar
  56. 56.
    M.Z.H. Rozaini and P. Brimblecombe, Water Air Soil Pollut. 198, 1 (2009).CrossRefGoogle Scholar
  57. 57.
    M. Dupas-Langlet, M. Benali, I. Pezron, K. Saleh, and L. Metlas-Komunjer, J. Food Eng. 115, 3 (2013).CrossRefGoogle Scholar
  58. 58.
    G. Zografi and B. Hancock, Topics in Pharmaceutical Sciences, eds. D.J.A. Crommelin, K.K. Midha, and T. Nagai (Stuttgart: Medpharm Scientific Publishers, 1993), pp. 405–419.Google Scholar
  59. 59.
    M. Kuwata, W. Shao, R. Lebouteiller, and S.T. Martin, Atmos. Chem. Phys. 12, 12 (2012).Google Scholar
  60. 60.
    P. Espeau, P. Negrier, and Y. Corvis, Cryst. Growth Des. 13, 2 (2013).CrossRefGoogle Scholar
  61. 61.
    R.A. Lipasek, N. Li, S.J. Schmidt, L.S. Taylor, and L.J. Mauer, J. Agric. Food Chem. 61, 38 (2013).CrossRefGoogle Scholar
  62. 62.
    F.D. Pope, B.J. Dennis-Smither, P.T. Griffiths, S.L. Clegg, and R.A. Cox, J. Phys. Chem. A 114, 16 (2010).Google Scholar
  63. 63.
    S.T. Martin, Chem. Rev. 100, 9 (2000).CrossRefGoogle Scholar
  64. 64.
    C.W. Harmon, R.L. Grimm, T.M. McIntire, M.D. Peterson, B. Njegic, V.M. Angel, A. Alshawa, J.S. Underwood, D.J. Tobias, R.B. Gerber, M.S. Gordon, J.C. Hemminger, and S.A. Nizkorodov, J. Phys. Chem. B 114, 7 (2010).CrossRefGoogle Scholar
  65. 65.
    J.G. Kapsalis, Water Activity: Theory and Applications to Food (New York: Marcel Dekker Inc, 1987), pp. 173–213.Google Scholar
  66. 66.
    R.D. Andrade, R. Lemus, and C.E. Perez, Vitae-Revista La Fac. Quim. Farm. 18, 3 (2011).Google Scholar
  67. 67.
    J. Sun and P.A. Ariya, Atmos. Environ. 45, 5 (2006).Google Scholar
  68. 68.
    L.J. Turbini, J.A. Jachim, G.B. Freeman, and J.F. Lane, in Proceedings of 1992 13th IEEE/CHMT International Electronic Manufacturing Symposium (1992), pp. 80–84Google Scholar
  69. 69.
    M. Tencer, Microelectron. Reliab. 48, 4 (2008).CrossRefGoogle Scholar
  70. 70.
    M.N. Chan, S.M. Kreidenweis, and Ch.K. Chan, Environ. Sci. Technol. 42, 10 (2008).CrossRefGoogle Scholar
  71. 71.
    M.T. Parsons, J. Mark, S.R. Lipetz, and A.K. Bertram, J. Geophys. Res. 109, 6 (2004).CrossRefGoogle Scholar
  72. 72.
    P. Saxena and L.M. Hildemann, Environ. Sci. Technol. 31, 11 (1997).CrossRefGoogle Scholar
  73. 73.
    I.R. Zamora, A. Tabazadeh, D.M. Golden, and M.Z. Jacobson, J. Geophys. Res. Atmos. 116, 23 (2011).Google Scholar
  74. 74.
    M.E. Wise, J.D. Surratt, D.B. Curtis, J.E. Shilling, and M.A. Tolbert, J. Geophys. Res. Atmos. 108, D20 (2003).Google Scholar
  75. 75.
    S.L. Clegg and J.H. Seinfeld, J. Phys. Chem. A 110, 17 (2006).Google Scholar
  76. 76.
    C.N. Cruz and S.N. Pandis, Environ. Sci. Technol. 34, 20 (2000).CrossRefGoogle Scholar
  77. 77.
    L. Treuel, S. Pederzani, and R. Zellner, Phys. Chem. Chem. Phys. 11, 36 (2009).CrossRefGoogle Scholar
  78. 78.
    M. Song, C. Marcolli, U.K. Krieger, A. Zuend, and T. Peter, Atmos. Chem. Phys. Discuss. 11, 10 (2011).CrossRefGoogle Scholar
  79. 79.
    A. Apelblat, M. Dov, J. Wisniak, and J. Zabicky, J. Chem. Thermodyn. 27, 1 (1995).CrossRefGoogle Scholar
  80. 80.
    L. Yang, R.T. Pabalan, and M.R. Juckett, J. Solution Chem. 35, 4 (2006).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Materials and Surface Engineering, Department of Mechanical EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations