Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 4070–4077 | Cite as

Textured Na x CoO2 Ceramics Sintered from Hydrothermal Platelet Nanocrystals: Growth Mechanism and Transport Properties

  • Wei Zhang
  • Pengcheng Liu
  • Yifeng Wang
  • Kongjun Zhu
  • Guoan Tai
  • Jinsong Liu
  • Jing Wang
  • Kang Yan
  • Jianhui Zhang
Article
  • 64 Downloads

Abstract

Nanostructuring is an effective approach to improve thermoelectric (TE) performance, which is caused by the interface and quantum effects on electron and phonon transport. For a typical layered structure such as sodium cobalt (NCO), a highly textured ceramic with nanostructure is beneficial for the carrier transport properties due to the strong anisotropy. In this paper, we established a textured NCO ceramic with highly oriented single crystals in nanoscale. The Na0.6CoO2 platelet crystals were prepared by a one-step hydrothermal method. The growth mechanism was revealed to involve dissolution–recrystallization and exchange reactions. NCO TE ceramics fabricated by a press-aided spark plasma sintering method showed a high degree of texturing, with the platelet crystals basically lying along the in-plane direction perpendicular to the press direction. TE properties of the textured NCO ceramics showed a strong anisotropic behavior. The in-plane electrical conductivity was considerably larger than the out-of-plane data because of fewer grain boundaries and interfaces that existed in the in-plane direction. Moreover, the in-plane Seebeck coefficient was higher because of the anisotropic electronic nature of NCO. Although the in-plane thermal conductivity was high, a prior ZT value was enabled for these NCO ceramics along this direction because of the dominant electrical transport. This finding provides a new approach to prepare highly oriented ceramics.

Keywords

NaxCoO2 crystal one-step hydrothermal method texture ceramic thermoelectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China (NSFC, No. 51372114), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics, Grant No. 0514Y01), the Natural Science Foundation of Jiangsu Province (BK20151475) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Supplementary material

11664_2018_6296_MOESM1_ESM.pdf (919 kb)
Supplementary material 1 (PDF 918 kb)

References

  1. 1.
    Y. Huang, B. Zhao, S. Lin, and Y. Sun, J. Phys. Chem. C 119, 7979 (2015).CrossRefGoogle Scholar
  2. 2.
    L. Yang, Z.G. Chen, M. Hong, G. Han, and J. Zou, ACS Appl. Mater. Interfaces. 7, 23694 (2015).CrossRefGoogle Scholar
  3. 3.
    R. Boston, W.L. Schmidt, G.D. Lewin, A.C. Iyasara, Z. Lu, H. Zhang, D.C. Sinclair, and I.M. Reaney, Chem. Mater. 29, 265 (2017).CrossRefGoogle Scholar
  4. 4.
    J.Y. Tak, K.H. Lee, J.Y. Kim, C.H. Lim, W.S. Seo, Y.S. Lim, H.K. Cho, and S.-M. Choi, J. Electron. Mater. 44, 1408 (2015).CrossRefGoogle Scholar
  5. 5.
    I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B. 56, R12685 (1997).CrossRefGoogle Scholar
  6. 6.
    Y.V. Lysogorskiy, S.A. Krivenko, I.R. Mukhamedshin, O.V. Nedopekin, and D.A. Tayurskii, Phys. Rev. B 94, 1 (2016).CrossRefGoogle Scholar
  7. 7.
    C.T. Lin, D.P. Chen, A. Maljuk, and P. Lemmens, J. Cryst. Growth 292, 422 (2006).CrossRefGoogle Scholar
  8. 8.
    D.J. Voneshen, K. Refson, E. Borissenko, M. Krisch, A. Bosak, A. Piovano, E. Cemal, M. Enderle, M.J. Gutmann, M. Hoesch, M. Roger, L. Gannon, A.T. Boothroyd, S. Uthayakumar, D.G. Porter, and J.P. Goff, Nat. Mater. 12, 1028 (2013).CrossRefGoogle Scholar
  9. 9.
    H. Itahara, K. Fujita, J. Sugiyama, T. Tsukada, and T. Tani, in ICT International Conference Proceedings (2003), pp. 211–214.Google Scholar
  10. 10.
    D. Vengust, B. Jancar, A. Sestan, M. Ponikvar Svet, B. Budic, and D. Suvorov, Chem. Mater. 25, 4791 (2013).CrossRefGoogle Scholar
  11. 11.
    J.Y. Son, B.G. Kim, and J.H. Cho, Appl. Phys. Lett. 86, 12685 (2005).CrossRefGoogle Scholar
  12. 12.
    W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, J. Appl. Phys. 105, 366 (2009).Google Scholar
  13. 13.
    N. Nakpathomkun, H.Q. Xu, and H. Linke, Physical Review B. 82, 4982 (2010).CrossRefGoogle Scholar
  14. 14.
    L. Shi, Nanosc. Microsc. Therm. 16, 79 (2014).CrossRefGoogle Scholar
  15. 15.
    M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Miiller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Adv. Funct. Mater. 14, 1189 (2004).CrossRefGoogle Scholar
  16. 16.
    Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. Macdonald, and R.L. Qiu, Nano Lett. 12, 6492 (2013).CrossRefGoogle Scholar
  17. 17.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, and D. Wang, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  18. 18.
    H. Song, C. Liu, J. Xu, Q. Jiang, and H. Shi, RSC Adv. 3, 22065 (2013).CrossRefGoogle Scholar
  19. 19.
    W.X. Zhou, S. Tan, K.Q. Chen, and W. Hu, J. Appl. Phys. 115, 777 (2014).Google Scholar
  20. 20.
    Y. Feng, J. Zhang, L. Wang, W. Zhang, T. Yuan, and K. Xue, Int. J. Refract. Met. H 68, 121 (2017).CrossRefGoogle Scholar
  21. 21.
    M.G.A. Ranieri, E.C. Aguiar, M. Cilense, B.D. Stojanovic, A.Z. Simões, and J.A. Varela, Mater. Res. Bull. 70, 20 (2015).CrossRefGoogle Scholar
  22. 22.
    H. Fang, T. Feng, H. Yang, X. Ruan, and Y. Wu, Nano Lett. 13, 2058 (2013).CrossRefGoogle Scholar
  23. 23.
    D. Chen, Y. Zhao, Y. Chen, B. Wang, Y. Wang, J. Zhou, and Z. Liang, ACS Appl. Mater. Interfaces. 7, 24403 (2015).CrossRefGoogle Scholar
  24. 24.
    Y. Kim, A. DiVenere, G.K.L. Wong, J.B. Ketterson, S. Cho, and J.R. Meyer, J. Appl. Phys. 91, 715 (2002).CrossRefGoogle Scholar
  25. 25.
    G.H. Dong, Y.J. Zhu, G.F. Cheng, and Y.J. Ruan, J. Alloys Compd. 550, 164 (2013).CrossRefGoogle Scholar
  26. 26.
    M. Miclau, K. Bokinala, and N. Miclau, Mater. Res. Bull. 54, 1 (2014).CrossRefGoogle Scholar
  27. 27.
    Y. Huang, B. Zhao, R. Ang, S. Lin, Z. Huang, S. Tan, Y. Liu, W. Song, and Y. Sun, J. Phys. Chem. C 117, 11459 (2013).CrossRefGoogle Scholar
  28. 28.
    Y. Wang, Y. Sui, J. Cheng, X. Wang, W. Su, and H. Fan, Appl. Phys. A 99, 451 (2010).CrossRefGoogle Scholar
  29. 29.
    D. Chen, Crystal growth, magnetism, transport and superconductivity of two dimensional sodium cobalt oxide single crystals. (University of Wollongong, 2008), http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1405& context=theses.
  30. 30.
    L. Yu, Y. Wang, and H.U. Habermeier, Appl. Phys. A Mater. Sci. Process. 113, 569 (2013).CrossRefGoogle Scholar
  31. 31.
    M.W. Wu, N.J.M. Horing, and H.L. Cui, Phys. Rev. B 54, 5438 (1995).CrossRefGoogle Scholar
  32. 32.
    H. Adachi, K.I. Uchida, E. Saitoh, J.I. Ohe, S. Takahashi, and S. Maekawa, Appl. Phys. Lett. 97, 778 (2010).CrossRefGoogle Scholar
  33. 33.
    E.D. Kriger, A.F. Kravchenko, B.V. Morozov, V.G. Polovinkin, and E.M. Skok, Physi. Stat. Sol. 13, 389 (2010).CrossRefGoogle Scholar
  34. 34.
    D. Kenfau, D. Chateigner, M. Gomina, J.G. Noudem, B. Ouladdiaf, and A. Dauscher, Mater. Today P2, 637 (2016).Google Scholar
  35. 35.
    M. Wang, Z. Tang, T. Zhu, and X. Zhao, Rsc Adv. 6, 98646 (2016).CrossRefGoogle Scholar
  36. 36.
    Z. Jiang, W. Zhang, L. Yan, and X. Niu, Mat. Sci. Eng. B 119, 182 (2005).CrossRefGoogle Scholar
  37. 37.
    G. Tang, W. Yang, J. Wen, Z. Wu, C. Fan, and Z. Wang, Ceram. Int. 41, 961 (2015).CrossRefGoogle Scholar
  38. 38.
    D.O. Demchenko and D.B. Ameen, Comp. Mater. Sci. 82, 219 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Wei Zhang
    • 1
    • 4
  • Pengcheng Liu
    • 3
  • Yifeng Wang
    • 2
  • Kongjun Zhu
    • 1
  • Guoan Tai
    • 1
  • Jinsong Liu
    • 4
  • Jing Wang
    • 1
  • Kang Yan
    • 1
  • Jianhui Zhang
    • 3
  1. 1.State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  3. 3.School of Mechanical and Electric EngineeringGuangzhou UniversityGuangzhouChina
  4. 4.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations