Advertisement

Shear Strength of Square Graphene Nanoribbons beyond Wrinkling

  • 73 Accesses

  • 1 Citations

Abstract

Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane (xy) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress–strain diagram beyond the elastic range. The results showed that the average slope of the stress–strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress–strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

  2. 2.

    K.I. Bolotin, K.J. Sikes, Z.D. Jiang, M. Klima, G. Fudenberg, J. Hone, P.H. Kim, and H.L. Stormer, Solid State Commun. 146, 351 (2008).

  3. 3.

    Y. Chu, T. Ragab, and C. Basaran, Carbon 89, 169 (2015).

  4. 4.

    B. Mortazavi, Z. Fan, L.F.C. Pereira, A. Harju, and T. Rabczuk, Carbon 103, 318 (2016).

  5. 5.

    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

  6. 6.

    Y. Chu, T. Ragab, P. Gautreau, and C. Basaran, J. Nanomech. Micromech. 5, 04015001 (2015).

  7. 7.

    Y.B. Chu, T. Ragab, and C. Basaran, Comput. Mater. Sci. 81, 269 (2014).

  8. 8.

    T. Enoki, S. Fujii, and K. Takai, Carbon 50, 3141 (2012).

  9. 9.

    H. Zhao, K. Min, and N.R. Aluru, Nano Lett. 9, 3012 (2009).

  10. 10.

    C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).

  11. 11.

    R. Rasuli, A. Iraji zad, and M.M. Ahadian, Nanotechnology 21, 185503 (2010).

  12. 12.

    A. Faccio Ricardo, P. Denis, H. Pardo, C. Goyenola, and W.Á. Mombrú, J. Phys. Condens. Matter 21, 285304 (2009).

  13. 13.

    Q.X. Pei, Y.W. Zhang, and V.B. Shenoy, Carbon 48, 898 (2010).

  14. 14.

    K. Min and N.R. Aluru, Appl. Phys. Lett. 98, 013113 (2011).

  15. 15.

    A. Udupa and A. Martini, Carbon 49, 3571 (2011).

  16. 16.

    C. Wang, Y. Liu, L. Lan, and H. Tan, Nanoscale 5, 4454 (2013).

  17. 17.

    A. Hadizadeh Kheirkhah, E. Saeivar Iranizad, M. Raeisi, and A. Rajabpour. Solid State Commun. 177, 98 (2014).

  18. 18.

    Q. Zheng, Y. Geng, S. Wang, Z. Li, and J.-K. Kim, Carbon 48, 4315 (2010).

  19. 19.

    T. Ragab, J. McDonald, and C. Basaran, Diam. Relat. Mater. 74, 9 (2017).

  20. 20.

    D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, and S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002).

  21. 21.

    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, J. Chem. Phys. 81, 3684 (1984).

  22. 22.

    K. Mylvaganam and L.C. Zhang, Carbon 42, 2025 (2004).

  23. 23.

    T. Ragab and C. Basaran, Comput. Mater. Sci. 46, 1135 (2009).

  24. 24.

    Y. Huang, J. Wu, and K.C. Hwang, Phys. Rev. B 74, 245413 (2006).

  25. 25.

    T. Ragab and C. Basaran, J. Electron. Packag. 133, 020903 (2011).

Download references

Acknowledgement

This project is sponsored by the United States Navy, Office of Naval Research.

Author information

Correspondence to Tarek Ragab.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 17480 kb)

Supplementary material 1 (MP4 17480 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ragab, T., Basaran, C. Shear Strength of Square Graphene Nanoribbons beyond Wrinkling. Journal of Elec Materi 47, 3891–3896 (2018) doi:10.1007/s11664-018-6264-z

Download citation

Keywords

  • Molecular dynamics simulations
  • shear strength
  • unravelling
  • wrinkling
  • buckling
  • GNRs