Optical Modulation of BST/STO Thin Films in the Terahertz Range

  • Ying Zeng
  • Songjie Shi
  • Ling Zhou
  • Furi Ling
  • Jianquan Yao
Article
  • 2 Downloads

Abstract

The \( {\hbox{Ba}}_{0.7} {\hbox{Sr}}_{0.3} {\hbox{TiO}}_{3} \) (BST) thin film (30.3 nm) deposited on a\( {\hbox{SrTiO}}_{3} \) (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2–1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement–electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.

Keywords

Thin film ferroelectrics optoelectronics terahertz spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Seeds, H. Shams, M.J. Fice, and C.C. Renaud, J. Lightwave Technol. 33, 579 (2015).CrossRefGoogle Scholar
  2. 2.
    W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, Opt. Lett. 40, 3185 (2015).CrossRefGoogle Scholar
  3. 3.
    R. Jiang, Z. Han, W. Sun, X. Du, Z. Wu, and H.-S. Jung, Appl. Phys. Lett. 107, 151105 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Bai, T. Bu, K. Chen, and S. Zhuang, Appl. Spectrosc. Rev. 50, 707 (2015).CrossRefGoogle Scholar
  5. 5.
    J. Petzelt and S. Kamba, Ferroelectrics 503, 19 (2016).CrossRefGoogle Scholar
  6. 6.
    V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, Phys. Rev. B. 90, 174105 (2014).CrossRefGoogle Scholar
  7. 7.
    Z. Quan, H. Hu, S. Guo, W. Liu, S. Xu, H. Huang, B. Sebo, G. Fang, M. Li, and X. Zhao, Appl. Surf. Sci. 255, 9045 (2009).CrossRefGoogle Scholar
  8. 8.
    P. Marsik, K. Sen, J. Khmaladze, M. Yazdi-Rizi, B.P.P. Mallett, and C. Bernhard, Appl. Phys. Lett. 108, 052901 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Schmitz and H. Schroeder, Integr. Ferroelectr. 46, 233 (2010).CrossRefGoogle Scholar
  10. 10.
    Z.-G. Zuo, F.-R. Ling, D.A.N. Li, J.-S. Liu, and J.-Q. Yao, Mod. Phys. Lett. B 27, 1350066 (2013).CrossRefGoogle Scholar
  11. 11.
    D.A. Tenne, A. Soukiassian, X.X. Xi, T.R. Taylor, P.J. Hansen, J.S. Speck, and R.A. York, Appl. Phys. Lett. 85, 4124 (2004).CrossRefGoogle Scholar
  12. 12.
    Y.H. Gao, J.H. Ma, T.X. Li, J.L. Sun, X.J. Meng, and J.H. Chu, J. Phys. D Appl. Phys. 41, 085305 (2008).CrossRefGoogle Scholar
  13. 13.
    L. Wu, H. Li, L. Jiang, C. Ding, Q. Sheng, X. Ding, and J. Yao, Opt. Mater. Express 4, 2595 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Xu, W. Menesklou, and E. Ivers-Tiffée, J. Eur. Ceram. Soc. 24, 1735 (2004).CrossRefGoogle Scholar
  15. 15.
    K. Terai, M. Lippmaa, P. Ahmet, T. Chikyow, H. Koinuma, M. Ohtani, and M. Kawasaki, Appl. Surf. Sci. 223, 183 (2004).CrossRefGoogle Scholar
  16. 16.
    C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, Phys. Rev. B. 80, 174116 (2009).CrossRefGoogle Scholar
  17. 17.
    C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, J. Alloys Compd. 687, 458 (2016).CrossRefGoogle Scholar
  18. 18.
    P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, Appl. Phys. Lett. 88, 102901 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Yu, Z.M. Huang, X.J. Meng, J.L. Sun, J.H. Chu, and D.Y. Tang, Appl. Phys. Lett. 78, 793 (2001).CrossRefGoogle Scholar
  20. 20.
    D. Nuzhnyy, J. Petzelt, S. Kamba, P. Kužel, C. Kadlec, V. Bovtun, M. Kempa, J. Schubert, C.M. Brooks, and D.G. Schlom, Appl. Phys. Lett. 95, 232902 (2009).CrossRefGoogle Scholar
  21. 21.
    S. Kamba, M. Kempa, V. Bovtun, J. Petzelt, K. Brinkman, and N. Setter, J. Phys. Condens. Matter 17, 3965 (2005).CrossRefGoogle Scholar
  22. 22.
    P.K.M. Kempa, S. Kamba, P. Samoukhina, J. Petzelt, A. Garg, and Z.H. Barber, J. Phys. Condens. Matter 15, 8095 (2003).CrossRefGoogle Scholar
  23. 23.
    F.S. Chen, J. Appl. Phys. 40, 3389 (1969).CrossRefGoogle Scholar
  24. 24.
    M. Zhu, Z. Du, Q. Liu, B. Chen, S.H. Tsang, and E.H.T. Teo, Appl. Phys. Lett. 108, 233502 (2016).CrossRefGoogle Scholar
  25. 25.
    B. Fischer, M. Cronin-Golomb, J.O. White, A. Yariv, and R. Neurgaonkar, Appl. Phys. Lett. 40, 863 (1982).CrossRefGoogle Scholar
  26. 26.
    C. Ederer and N.A. Spaldin, Phys. Rev. Lett. 95, 257601 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ying Zeng
    • 1
  • Songjie Shi
    • 1
  • Ling Zhou
    • 2
  • Furi Ling
    • 1
  • Jianquan Yao
    • 1
    • 3
    • 4
  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Optical and Electronic Information and Engineering Research Center for Functional Ceramics of the Ministry of EducationHuazhong University of Science and TechnologyWuhanChina
  3. 3.Institute of Laser and Opto-Electronics, College of Precision Instruments and Opto-Electronics EngineeringTianjin UniversityTianjinChina
  4. 4.Key Laboratory of Opto-Electronics Information Technology, Ministry of EducationTianjin UniversityTianjinChina

Personalised recommendations