Magneto Tuning of a Ferrite Dielectric Resonator Antenna Based on LiFe5O8 Matrix
- 13 Downloads
Abstract
LiFe5O8 (LFO) spinel-like material has been studied for use in ferrite resonator antennas (FRAs). Antenna parameters such as gain and return loss were greatly affected when an external magnetic field was applied to the FRA. The temperature coefficient of the resonant frequency (τ f ) for the FRA presented a value of − 482.16 ppm/°C. The magnetic hysteresis results showed that the LFO was a soft ferrite, considering the values of the remanent magnetization (Mr = 5.95 emu g−1), coercive field (0.76 mT), and saturation magnetization (32.15 emu g−1). The magnetodielectric resonator presented a tuning effect in the resonant frequency as a function of the external magnetic field. The antenna bandwidth was also affected by the presence of the magnetic field. LFO is a soft ferrite with applications in microwave circuits, antennas, and devices for operation at microwave frequencies due to its magnetization and demagnetization properties. Impedance study revealed increasing conductivity from room to higher temperature with low activation energy (0.36 eV).
Keywords
FRA LFO hysteresis spectroscopy impedance τfPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
Financial support from the Brazilian Agency for Scientific and Technological Development CAPES and the US Air Force Office of Scientific Research (AFOSR, FA9550-16-1-0127) is gratefully acknowledged.
References
- 1.A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Applications (Hoboken: Wiley, 2003).CrossRefGoogle Scholar
- 2.E.J.J. Mallmann, A.S.B. Sombra, J.C. Goes, and P.B.A. Fechine, Solid State Phenom. 202, 65 (2013).CrossRefGoogle Scholar
- 3.S. Parida, et al., J. Alloys Compd. 528, 126 (2012).CrossRefGoogle Scholar
- 4.J.T.H.S. Martin, Y.M.M. Antar, A.A. Kishk, A. Ittipiboon, and M. Cuhaci, Electron. Lett. 26, 2015 (1990).CrossRefGoogle Scholar
- 5.L.-R. Tan, W. Rui-Xin, C.-Y. Wang, and Y. Poo, IEEE Antennas Wirel. Propag. Lett. 13, 325 (2014).CrossRefGoogle Scholar
- 6.M. George, S.S. Nair, A.M. John, P.A. Joy, and M.R. Anantharaman, J. Phys. D Appl. Phys. 39, 900 (2006).CrossRefGoogle Scholar
- 7.H.-I. Hsiang, W.-C. Kuo, and C.-S. Hsi, J. Eur. Ceram. Soc. 37, (2017).Google Scholar
- 8.H.M. El-Sayed, I.A. Ali, A. Azzam, and A.A. Sattar, J. Magn. Magn. Mater. 424, 226 (2017).CrossRefGoogle Scholar
- 9.G.O. White and C.E. Patton, J. Magn. Magn. Mater. 9, 299 (1978).CrossRefGoogle Scholar
- 10.R.V.B. Campos, et al., J. Electron. Mater. 44, 4220 (2015).CrossRefGoogle Scholar
- 11.R.G.M. Oliveira, et al., Microw. Opt. Technol. Lett. 58, 1211 (2016).CrossRefGoogle Scholar
- 12.R. Khalili Senobari, J. Sadeh, and H. Borsi, Electr. Power Syst. Res. 155, 172 (2018).CrossRefGoogle Scholar
- 13.M.I. Bichurin, V.M. Petrov, Y.V. Kiliba, and G. Srinivasan, Phys. Rev. B 66, 134404 (2002).CrossRefGoogle Scholar
- 14.M.A.S. Silva, T.S.M. Fernandes, and A.S.B. Sombra, J. Appl. Phys. 112, 74106 (2012).CrossRefGoogle Scholar
- 15.V. Pecharsky and P. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (New York: Springer, 2009). https://doi.org/10.1007/978-0-387-09579-0.Google Scholar
- 16.R.J.D. Tilley, J. Chem. Inf. Model. 53, (2013).Google Scholar
- 17.S.A. Mazen and N.I. Abu-Elsaad, Appl. Nanosci. 5, 105 (2015).CrossRefGoogle Scholar
- 18.S. Wang, et al., Chem. Eng. J. 332, 160 (2018).CrossRefGoogle Scholar
- 19.A.C.H. Barreto, et al., J. Mater. Eng. Perform. 22, 2073 (2013).CrossRefGoogle Scholar
- 20.D. Bhalla, D. Singh, S. Singh, and D. Seth, Am. J. Mater. Sci. 2, 165 (2013).CrossRefGoogle Scholar
- 21.W. Cai. The physics of soft ferrite. In: Proceedings of Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (cat. no. 99CH37035) 701 (IEEE). https://doi.org/10.1109/eeic.1999.826295.
- 22.M. Usakova, E. Usak, R. Dosoudil, and R. Sykora, IEEE Trans. Magn. 53, 1 (2017).CrossRefGoogle Scholar
- 23.A. Petosa, J.S. Wight, and A. Ittipiboon, Electron. Lett. 30, 1261 (1994).CrossRefGoogle Scholar
- 24.P.B.A. Fechine, et al., Microw. Opt. Technol. Lett. 50, 2852 (2008).CrossRefGoogle Scholar
- 25.L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, and V.K. Varadan, Microwave Electronics: Measurement and Materials Characterization (Chichester: Wiley, 2004).CrossRefGoogle Scholar
- 26.D. Smugala, M. Bonk, and R. Ziemski, Measurement 114, 428 (2018).CrossRefGoogle Scholar
- 27.C.A. Balanis, Antenna Theory: Analysis and Design (New York: Wiley, 2012).Google Scholar
- 28.P. Gas, Biocybern. Biomed. Eng. 37, 78–93 (2017).CrossRefGoogle Scholar
- 29.A. Petosa, Dielectric Resonator Antenna Handbook (Norwood: Artech House, 2007).Google Scholar
- 30.R.P. Patil, S.B. Patil, B.V. Jadhav, S.D. Delekar, and P.P. Hankare, J. Magn. Magn. Mater. 401, 870 (2016).CrossRefGoogle Scholar
- 31.J.M.S. Filho, et al., J. Electron. Mater. 46, 4344 (2017).CrossRefGoogle Scholar
- 32.M. Chandrasekhar, D.K. Khatua, R. Pattanayak, and P. Kumar, J. Phys. Chem. Solids 111, 160 (2017).CrossRefGoogle Scholar
- 33.X.-Z. Yuan, C. Song, H. Wang, and J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells (London: Springer, 2010). https://doi.org/10.1007/978-1-84882-846-9.CrossRefGoogle Scholar
- 34.D.V.M. Paiva, M.A.S. Silva, A.S.B. Sombra, and P.B.A. Fechine, RSC Adv. 6, 42502 (2016).CrossRefGoogle Scholar