Preparation of Graphene–Zinc Oxide Nanostructure Composite for Carbon Monoxide Gas Sensing

  • Ahmad Rifqi Muchtar
  • Ni Luh Wulan Septiani
  • Muhammad Iqbal
  • Ahmad Nuruddin
  • Brian Yuliarto
Article
  • 11 Downloads

Abstract

A simple method to synthesize graphene–zinc oxide nanocomposite has been developed. A reduced graphene oxide–ZnO nanocomposite was prepared using a reflux method with ethylene glycol as medium. X-ray diffraction analysis, scanning electron microscopy, energy-dispersive spectrometry, and nitrogen adsorption–desorption measurements were used to characterize the resulting composite materials. The highest response of about 98% was observed when using pure ZnO at 300°C, while the second highest sensor response of about 96% was achieved by graphene–ZnO with 1:3 composition. It was found that the graphene–zinc oxide hybrid has potential to improve sensor performance at low temperature. The graphene–ZnO hybrid with 1:3 composition showed good response of 36% at 125°C, an operating temperature at which pure ZnO showed no response.

Keywords

Reduced graphene oxide zinc oxide nanostructured material composite gas sensor carbon monoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Mustafic, P. Jabre, C. Caussin, M.H. Murad, S. Escolano, M. Tafflet, M.-C. Perier, E. Marijon, D. Vernerey, J.-P. Empana, and X. Jouven, JAMA 307, 713 (2012).CrossRefGoogle Scholar
  2. 2.
    M. Vrijheid, D. Martinez, I. Aguilera, M. Bustamante, F. Ballester, M. Estarlich, A.F. Somoano, M. Guxens, N. Lertxundi, M.D. Martinez, A. Tardon, and J. Sunyer, Epidemiology 23, 23 (2012).CrossRefGoogle Scholar
  3. 3.
    R.J. Levy, Carbon Monoxide Anesth. 123, 670 (2016).Google Scholar
  4. 4.
    K.R. Amin and A. Bid, Curr. Sci. 107, 430 (2014).Google Scholar
  5. 5.
    F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, and K. Novoselov, Nat. Mater. 6, 652 (2007).CrossRefGoogle Scholar
  6. 6.
    C.A. Betty, Mater. Sci. Technol. 32, 375 (2016).CrossRefGoogle Scholar
  7. 7.
    B. Yuliarto, M.F. Ramadhani, Nugraha, N.L.W. Septiani, and K.A. Hamam, J. Mater. Sci. 52, 4543 (2017).CrossRefGoogle Scholar
  8. 8.
    N.L.W. Septiani, B. Yuliarto, Nugraha, and H.K. Dipojono, Appl. Phys. A 123, 1 (2017).Google Scholar
  9. 9.
    B. Yuliarto, L. Nulhakim, M.F. Ramadhani, M. Iqbal, S. Nugraha, and A. Nuruddin, IEEE Sensors J. 15, 4114 (2015).CrossRefGoogle Scholar
  10. 10.
    H.J. Yoon, D.H. Jun, J.H. Yang, Z. Zhou, S.S. Yang, and M.M.-C. Cheng, Sensors Actuators B 157, 310 (2011).CrossRefGoogle Scholar
  11. 11.
    H. Jayatissa, Solid State Electron. 2012, 159 (2012).Google Scholar
  12. 12.
    K. Anand, O. Singh, and R.C. Singh, Appl. Phys. A 116, 1141 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Liu, B. Yu, H. Zhang, T. Fei, and T. Zhang, Sensors Actuators B 202, 272 (2014).CrossRefGoogle Scholar
  14. 14.
    R.K. Joshi, Q. Hu, F. Alvi, N. Joshi, and A. Kumar, J. Phys. Chem. 113, 16199 (2009).Google Scholar
  15. 15.
    G. Singh, A. Choudhary, D. Haranath, A.G. Joshi, N. Singh, S. Singh, and R. Pasricha, Carbon 50, 385 (2012).CrossRefGoogle Scholar
  16. 16.
    X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, and C. Sun, Chem. Eng. J. 183, 238 (2012).CrossRefGoogle Scholar
  17. 17.
    K.L. Foo, U. Hashim, K. Muhammad, and C.H. Voon, Nanoscale Res. Lett. 9, 429 (2014).CrossRefGoogle Scholar
  18. 18.
    M. Nasrollahzadeh, B. Jaleh, and A. Jabbari, RSC Adv. 4, 36713 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Pei and H.-M. Cheng, Carbon 50, 3210 (2012).CrossRefGoogle Scholar
  20. 20.
    G. Lu, L.E. Ocola, and J. Chen, Appl. Phys. Lett. 94, 083111-1 (2009).Google Scholar
  21. 21.
    J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, and B.H. Weiller, ACS Nano 3, 301 (2009).CrossRefGoogle Scholar
  22. 22.
    M. Qazi, T. Vogt, and G. Koley, Appl. Phys. Lett. 91, 233101-1 (2007).Google Scholar
  23. 23.
    D.-T. Phan and G.-S. Chung, J. Phys. Chem. Solids 74, 1509 (2013).CrossRefGoogle Scholar
  24. 24.
    C.I.L. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, and T.A.P. Rocha-Santos, TrAC Trends Anal. Chem. 91, 53 (2017).CrossRefGoogle Scholar
  25. 25.
    S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathann, and A. Abdala, Sensors Actuators B 218, 160 (2015).CrossRefGoogle Scholar
  26. 26.
    F.-L. Meng, Z. Guo, and X.-J. Huang, TrAC Trends Anal. Chem. 68, 37 (2015).CrossRefGoogle Scholar
  27. 27.
    E. Lackner, J. Krainer, R.W. Teubenbacher, F. Sosada, M. Deluca, C. Gspan, K. Rohracher, E. Wachmann, and A. Kock, Mater. Today Proc. 4, 7128 (2017).CrossRefGoogle Scholar
  28. 28.
    S.K. Lim, S.H. Hong, S.-H. Hwang, W.M. Choi, S. Kim, H. Park, and M.G. Jeong, J. Mater. Sci. Technol. 31, 639 (2015).CrossRefGoogle Scholar
  29. 29.
    S.K. Lim, S.-H. Hwang, D. Chang, and S. Kim, Sensors Actuators B 149, 28 (2010).CrossRefGoogle Scholar
  30. 30.
    C. Balamurugan, S. Arunkumar, and D.-W. Lee, Sensors Actuators B 234, 155 (2016).CrossRefGoogle Scholar
  31. 31.
    D. Susanti, A.S. Perdana, H. Purwaningsih, L. Noerochim, and G.E. Kusuma, AIP Conf. Proc. 1586, 14 (2014).CrossRefGoogle Scholar
  32. 32.
    C.R. Michel, A.H. Martinez-Preciado, R. Parra, C.M. Aldao, and M.A. Ponce, Sensors Actuators B 202, 1220 (2014).CrossRefGoogle Scholar
  33. 33.
    M. Shojaee, Sh. Nasresfahani, and M.H. Sheikhi, Sensors Actuators B 254, 457 (2018).CrossRefGoogle Scholar
  34. 34.
    H.W. Kim, Y.J. Kwon, A. Mirzaei, S.Y. Kang, M.S. Choi, J.H. Bang, and S.S. Kim, Sensors Actuators B 249, 590 (2017).CrossRefGoogle Scholar
  35. 35.
    H. Tai, Z. Yuan, W. Zheng, Z. Ye, C. Liu, and X. Du, Nanoscale Res. Lett. 11, 130 (2016).CrossRefGoogle Scholar
  36. 36.
    T. Wang, Z. Sun, D. Huang, Z. Yang, Q. Ji, N. Hu, G. Yin, D. He, H. Wei, and Y. Zhang, Sensors Actuators B 252, 284 (2017).CrossRefGoogle Scholar
  37. 37.
    K. Anand, O. Singh, M.P. Singh, J. Kaur, and R.C. Singh, Sensors Actuators B 195, 409 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Advanced Functional Materials Laboratory, Engineering Physics Department, Faculty of Industrial TechnologyInstitut Teknologi BandungBandungIndonesia
  2. 2.Research Center for Nanosciences and NanotechnologyInstitut Teknologi BandungBandungIndonesia

Personalised recommendations