Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3615–3621 | Cite as

Electronic Structure, Optical and Transport Properties of Double Perovskite La2NbMnO6: A Theoretical Understanding from DFT Calculations

  • Khursheed Ahmad Parrey
  • Shakeel Ahmad Khandy
  • Ishtihadah Islam
  • Amel Laref
  • Dinesh C. Gupta
  • Asad Niazi
  • Anver Aziz
  • S. G. Ansari
  • R. Khenata
  • Seemin Rubab
Article

Abstract

Double perovskite La2NbMnO6 was systematically studied using the first-principles calculations. The structural, electronic, optical and transport properties of this compound were calculated. Spin resolved band structure predicted this material as a half-metal with an energy gap of 3.75 eV in spin down state. The optical coefficients including optical conductivity, reflectivity and electron energy loss are calculated for photon energy up to 30.00 eV to understand the optical response of this perovskite. The strong absorption of all the ultraviolet and infrared frequencies of the spectrum by this material may suggest the potential application of this material for the optoelectronic devices in ultraviolet and infra-red region. Also, the thermoelectric properties with a speculation from the half-metallic electronic structure are reported. Subsequently, the Seebeck coefficient, electrical and thermal conductivity coefficients are calculated to predict the thermoelectric figure of merit (zT), the maximum of which is found out to be 0.14 at 800 K.

Keywords

Double perovskites DFT calculations electronic structure transport and thermodynamic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

One of the authors, A. Laref, wants to acknowledge the “Research Center of Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University for the financial support.

References

  1. 1.
    A.H. Reshak, Phys. Chem. Chem. Phys. 6, 92887 (2016).Google Scholar
  2. 2.
    Y.P. Liu, H.R. Fuh, and Y.K. Wang, Comput. Mater. Sci. 92, 63 (2014).CrossRefGoogle Scholar
  3. 3.
    K.W. Lee and W.E. Pickett, Phys. Rev. B 77, 115101 (2008).CrossRefGoogle Scholar
  4. 4.
    S.A. Khandy and D. Gupta, RSC Adv. 6, 97641 (2016).CrossRefGoogle Scholar
  5. 5.
    A.H. Reshak, RSC Adv. 4, 63137 (2014).CrossRefGoogle Scholar
  6. 6.
    S.A. Khandy and D.C. Gupta, RSC Adv. 6, 48009 (2016).CrossRefGoogle Scholar
  7. 7.
    A. Souidi, S. Bentata, W. Benstaali, B. Bouadjemi, A. Abbad, and T. Lantri, Mater. Sci. Semicond. Proc. 43, 196 (2016).CrossRefGoogle Scholar
  8. 8.
    M. Musa Saad H.-E, Comput. Mater. Sci. 111, 481 (2016).CrossRefGoogle Scholar
  9. 9.
    S.A. Khandy and D.C. Gupta, Mater. Chem. Phys. 198, 380 (2017).CrossRefGoogle Scholar
  10. 10.
    S.A. Khandy and D.C. Gupta, J. Magn. Magn. Mater. 441, 166 (2017).CrossRefGoogle Scholar
  11. 11.
    V.L. Joseph Joly, Y.B. Khollam, P.A. Joy, C.S. Gopinath, and S.K. Date, J. Phys.: Condens. Matter 13, 11001 (2001).Google Scholar
  12. 12.
    H. Kato, T. Okuda, Y. Okimoto, Y. Tomioka, Y. Takenoya, A. Ohkubo, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 81, 328 (2002).CrossRefGoogle Scholar
  13. 13.
    T.S. Chan, R.S. Liu, G.Y. Guo, S.F. Hu, J.G. Lin, J.M. Chen, and C.R. Chang, Solid State Commun. 133, 265 (2005).CrossRefGoogle Scholar
  14. 14.
    K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395, 677 (1998).CrossRefGoogle Scholar
  15. 15.
    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.-W. Cheong, Nature 429, 392 (2004).CrossRefGoogle Scholar
  16. 16.
    M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127, 8889 (2005).CrossRefGoogle Scholar
  17. 17.
    H. Das, M. De Raychaudhury, and T. Saha-Dasgupta, Appl. Phys. Lett. 92, 201912 (2008).CrossRefGoogle Scholar
  18. 18.
    N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater. Weinheim Ger. 17, 2225 (2005).CrossRefGoogle Scholar
  19. 19.
    N.-N. Zu, R. Li, Y.-H. Zheng, and L. Chen, Chin. Phys. Lett. 34, 107101 (2017).CrossRefGoogle Scholar
  20. 20.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).Google Scholar
  21. 21.
    J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  22. 22.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B Condens. Matter Mater. Phys. 57, 1505 (1998).CrossRefGoogle Scholar
  23. 23.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  24. 24.
    S.A. Khandy and D.C. Gupta, J. Electron. Mater. 47, 436 (2018).CrossRefGoogle Scholar
  25. 25.
    W.-E. Pickett, Phys. Rev. B 57, 10613 (1998).CrossRefGoogle Scholar
  26. 26.
    D.P. Rai, et al., Mater. Chem. Phys. 186, 620 (2017).CrossRefGoogle Scholar
  27. 27.
    B. Amin, I. Ahmad, M. Maqbool, S. Goumrisaid, and R. Ahmad, J. Appl. Phys. 109, 023109 (2011).CrossRefGoogle Scholar
  28. 28.
    F. Wooten, Optical Properties of Solids (New York: Academic Press, 1972).Google Scholar
  29. 29.
    L. Li, Y.-J. Wang, D.-X. Liu, C.-G. Ma, M.G. Brik, A. Suchocki, M. Piasecki, and A.H. Reshak, Mater. Chem. Phys. 188, 39 (2017).CrossRefGoogle Scholar
  30. 30.
    N. Erum and M.A. Iqbal, Mater. Res. Express 4, 025904 (2017).CrossRefGoogle Scholar
  31. 31.
    S.A. Khandy and D.C. Gupta, J. Electron. Mater. 46, 5531 (2017).CrossRefGoogle Scholar
  32. 32.
    S. Yousuf and D.C. Gupta, Mater. Chem. Phys. 192, 33 (2017).CrossRefGoogle Scholar
  33. 33.
    A.J. Hong, L. Li, R. He, J.J. Gong, Z.B. Yan, K.F. Wang, J.M. Liu, and Z.F. Ren, Sci. Rep. 6, 22778 (2016).CrossRefGoogle Scholar
  34. 34.
    T.M. Bhat and D.C. Gupta, J. Magn. Magn. Mater. 435, 173 (2017).CrossRefGoogle Scholar
  35. 35.
    M. Saxena and T. Maiti, J. Alloys Compd. 710, 472 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Khursheed Ahmad Parrey
    • 1
  • Shakeel Ahmad Khandy
    • 2
  • Ishtihadah Islam
    • 1
  • Amel Laref
    • 3
  • Dinesh C. Gupta
    • 2
  • Asad Niazi
    • 1
  • Anver Aziz
    • 1
  • S. G. Ansari
    • 4
  • R. Khenata
    • 5
  • Seemin Rubab
    • 6
  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Condensed Matter Theory Group, School of Studies in PhysicsJiwaji UniversityGwaliorIndia
  3. 3.Department of Physics, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Centre for Interdisciplinary Research in Basic SciencesJamia Millia IslamiaNew DelhiIndia
  5. 5.Department Laboratoire de Physique Quantique de la matire et de Modlisation Mathmatique (LPQ3M)Universit de MascaraMascaraAlgeria
  6. 6.Department of PhysicsNational Institute of TechnologySrinagarIndia

Personalised recommendations