Advertisement

Journal of Electronic Materials

, Volume 47, Issue 5, pp 2890–2896 | Cite as

Structural and Electronic Properties of α2-Graphyne Nanotubes: A Density Functional Theory Study

  • Roya MajidiEmail author
Article

Abstract

Another form of carbon-based two-dimensional material in the graphene family, named the α2-graphyne sheet, was predicted very recently. The α2-graphyne sheet was created by doubling each acetylenic linker in an α-graphyne sheet. It exhibited semimetallic Dirac point features similar to graphene and α-graphyne sheets. In the present work, single -walled carbon nanotubes based on an α2-graphyne sheet was introduced. The structural and electronic properties of these nanotubes were studied using density functional theory. It was found that armchair α2-graphyne nanotubes showed metallic behavior, while zigzag α2-graphyne nanotubes were found to have semiconducting or metallic properties depending on tube size. The energy band gap of zigzag α2-graphyne nanotubes decreased with increasing tube diameter. The results indicated that the α2-graphyne sheet and its nanotubes can be proper materials for future nanoelectronics.

Keywords

α2-Graphyne graphyne nanotube electronic band structure density of states density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X.-D. Wen, T. Yang, R. Hoffmann, N.W. Ashcroft, R.L. Martin, S.P. Rudin, and J.-X. Zhu, ACS Nano 6, 7142 (2012).CrossRefGoogle Scholar
  2. 2.
    R. Majidi, Mol. Phys. 111, 89 (2012).CrossRefGoogle Scholar
  3. 3.
    R. Majidi and A.R. Karami, Ind. J. Phys. 88, 483 (2014).CrossRefGoogle Scholar
  4. 4.
    R. Majidi and A.R. Karami, Phys. E 70, 170 (2015).CrossRefGoogle Scholar
  5. 5.
    J.S. da Araújo and R.W. Nunes, Phys. Rev. B 81, 073408 (2010).CrossRefGoogle Scholar
  6. 6.
    A.K. Geim, Science 324, 1530 (2009).CrossRefGoogle Scholar
  7. 7.
    R. Majidi and K. Ghafoori Tabrizi, Fuller. Nanotub. Carbon Nanostruct. 19, 532 (2011).CrossRefGoogle Scholar
  8. 8.
    D. Malko, C. Neiss, F. Vines, and A. Gorling, Phys. Rev. Lett. 108, 086804 (2012).CrossRefGoogle Scholar
  9. 9.
    R.H. Baughman, H. Eckhardt, and M. Kertesz, J. Chem. Phys. 87, 6687 (1987).CrossRefGoogle Scholar
  10. 10.
    R. Majidi, Nano 8, 1350060 (2013).CrossRefGoogle Scholar
  11. 11.
    R. Majidi, Can. J. Phys. 94, 305 (2016).CrossRefGoogle Scholar
  12. 12.
    R. Majidi, Can. J. Chem. 94, 229 (2016).CrossRefGoogle Scholar
  13. 13.
    R. Majidi and A.R. Karami, Stud. UBB Chem. 1, 177 (2016).Google Scholar
  14. 14.
    R. Majidi and A.R. Karami, Mol. Phys. 111, 3194 (2013).CrossRefGoogle Scholar
  15. 15.
    B. Bhattacharya, N. Bedamani Singh, and U. Sarkar, Int. J. Quantum Chem. 115, 820 (2015).CrossRefGoogle Scholar
  16. 16.
    U. Sarkar, B. Bhattacharya, and N. Seriani, Chem. Phys. 461, 74 (2015).CrossRefGoogle Scholar
  17. 17.
    B. Bhattacharya and U. Sarkar, Chem. Phys. 478, 73 (2016).CrossRefGoogle Scholar
  18. 18.
    N.V.R. Nulakani and V. Subramanian, J. Phys. Chem. C 120, 15153 (2016).CrossRefGoogle Scholar
  19. 19.
    R. Majidi, Phys. E 90, 189 (2017).CrossRefGoogle Scholar
  20. 20.
    R. Majidi and A.R. Karami, Comput. Mater. Sci. 97, 227 (2015).CrossRefGoogle Scholar
  21. 21.
    V.R. Coluci and D.S. Galvao, J. Chem. Phys. 121, 3228 (2004).CrossRefGoogle Scholar
  22. 22.
    A.L. Ivanovskii, Prog. Solid State Chem. 41, 1 (2013).CrossRefGoogle Scholar
  23. 23.
    B. Kang and J.K. Lee, Carbon 84, 246 (2015).CrossRefGoogle Scholar
  24. 24.
    V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvao, and R.H. Baughman, Phys. Rev. B 68, 035430 (2003).CrossRefGoogle Scholar
  25. 25.
    A.N. Enyashin, Y.N. Makurin, and A.L. Ivanovskii, Carbon 42, 2081 (2004).CrossRefGoogle Scholar
  26. 26.
    V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvao, and R.H. Baughman, Nanotechnology 15, 142 (2004).CrossRefGoogle Scholar
  27. 27.
    R. Majidi, J. Comput. Electron. 15, 1263 (2016).CrossRefGoogle Scholar
  28. 28.
    J. Deb, B. Bhattacharya, D. Paul, and U. Sarkar, Phys. E 84, 330 (2016).CrossRefGoogle Scholar
  29. 29.
    A.R. Karami and R. Majidi, Chem. Lett. 44, 1071 (2015).CrossRefGoogle Scholar
  30. 30.
    T. Ozaki, H. Kino, J. Yu, M.J. Han, N. Kobayashi, M. Ohfuti, F. Ishii, F., et al., User’s manual of OpenMX version 3.8. http://www.openmx-square.org. Accessed 1 Feb 2018.
  31. 31.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  32. 32.
    I. Morrison, D.M. Bylander, and L. Kleinman, Phys. Rev. B 47, 6728 (1993).CrossRefGoogle Scholar
  33. 33.
  34. 34.
    S. Jalili and R. Majidi, J. Comp. Theor. Nanosci. 3, 664 (2006).CrossRefGoogle Scholar
  35. 35.
    M.S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33, 883 (1995).CrossRefGoogle Scholar
  36. 36.
    R. Majidi, K. Ghafoori Tabrizi, and S. Jalili, Phys. B 404, 3417 (2009).CrossRefGoogle Scholar
  37. 37.
    M. Ouyang, J.L. Huang, C.L. Cheung, and C.M. Lieber, Science 292, 702 (2001).CrossRefGoogle Scholar
  38. 38.
    M.R. Mananghaya, G.N. Santos, D. Yu, and C. Stampfl, Sci. Rep. 7, 15727 (2017).CrossRefGoogle Scholar
  39. 39.
    H.J. Liu and C.T. Chan, Phys. Rev. B 66, 115416 (2002).CrossRefGoogle Scholar
  40. 40.
    M. Machon, S. Reich, C. Thomsen, D. Sanchez-Portal, and P. Ordejon, Phys. Rev. B 66, 155410 (2002).CrossRefGoogle Scholar
  41. 41.
    C.L. Kane and E.J. Mele, Phys. Rev. Lett. 78, 1932 (1997).CrossRefGoogle Scholar
  42. 42.
    M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Berlin: Springer, 2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsShahid Rajaee Teacher Training UniversityLavizan, TehranIran

Personalised recommendations