Advertisement

Journal of Electronic Materials

, Volume 47, Issue 9, pp 4959–4963 | Cite as

Catastrophic Optical Damage of GaN-Based Diode Lasers: Sequence of Events, Damage Pattern, and Comparison with GaAs-Based Devices

  • Jens W. Tomm
  • Robert Kernke
  • Giovanna Mura
  • Massimo Vanzi
  • Martin Hempel
  • Bruno Acklin
Topical Collection: 17th Conference on Defects (DRIP XVII)
  • 43 Downloads
Part of the following topical collections:
  1. 17th Conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP XVII)

Abstract

Gallium-nitride-based diode lasers were intentionally damaged using single sub-μs current pulses. This approach provoked catastrophic optical damage, a known sudden degradation mechanism, which becomes evident as surface modification at the aperture, where the 450-nm laser emission leaves the waveguide of the device. Subsequently, we analyzed the related damage pattern inside the device. Knowledge about the operating conditions, degradation time, and energy introduced into the defect allows estimates of the temperature during the process (∼ 1000°C) and defect propagation velocity (110 μm/μs). Further analysis of this data allows for conclusions regarding the mechanisms that govern defect creation at the surface and defect propagation inside the device. Moreover, we compared these findings with earlier results obtained from gallium-arsenide-based devices and find similarities in the overall scenario, while the defect initialization and defect pattern are strikingly different.

Keywords

Catastrophic optical damage COD GaN-based diode laser generic degradation damage pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Dr. Anna Mogilatenko and Dr. Harald König for helpful discussions. We also thank Dr. Elodia Musu of CRS4-Cagliari for FIB sample preparation, and Dr. Vittorio Morandi and Dr. Andrea Migliori of CNR-IMM Bologna for TEM/STEM analysis.

References

  1. 1.
    C. Harder, Pump Diode Lasers (Amsterdam: Elsevier, 2008), p. 107.Google Scholar
  2. 2.
    J.W. Tomm, M. Ziegler, M. Hempel, and T. Elsaesser, Laser Photon. Rev. 5, 422 (2011).CrossRefGoogle Scholar
  3. 3.
    M. Furitsch, Untersuchung von Degradationsmechanismen an (Al/In)GaN-basierenden Laserdioden, 1st ed. (Göttingen: Cuvillier, 2007), p. 168.Google Scholar
  4. 4.
    T. Schoedl, U.T. Schwarz, V. Kummler, M. Furitsch, A. Leber, A. Miler, A. Lell, and V. Harle, J. Appl. Phys. 97, 1231021 (2005).CrossRefGoogle Scholar
  5. 5.
    T. Schoedl, U.T. Schwarz, S. Miller, A. Leber, M. Furitsch, A. Lell, and V. Harle, Phys. Status Solidi A Appl. Res. 201, 2635 (2004).Google Scholar
  6. 6.
    U. Strauss, A. Somers, U. Heine, T. Wurm, M. Peter, C. Eichler, S. Gerhard, G. Bruederl, S. Tautz, B. Stojetz, A. Loeffler, and H. Koenig, Proc. SPIE 10123, 101230A (2017).Google Scholar
  7. 7.
    G. Mura, M. Vanzi, M. Hempel, and J.W. Tomm, Phys. Status Solidi (RRL) Rapid Res. Lett. 11, 17001321 (2017).Google Scholar
  8. 8.
    H.Y. Ryu, K.H. Ha, S.N. Lee, K.K. Choi, T. Jang, J.K. Son, J.H. Chae, S.H. Chae, H.S. Paek, Y.J. Sung, T. Sakong, H.G. Kim, K.S. Kim, Y.H. Kim, O.H. Nam, and Y.J. Park, Photon. Technol. Lett. IEEE 18, 1001 (2006).CrossRefGoogle Scholar
  9. 9.
    H.Y. Ryu, K.H. Ha, S.N. Lee, K.K. Choi, T. Jang, J.K. Son, H.G. Kim, J.H. Chae, H.S. Paek, Y.J. Sung, T. Sakong, K.S. Kim, O.H. Nam, and Y.J. Park, Proc. SPIE 6352, 63521I (2006).CrossRefGoogle Scholar
  10. 10.
    M. Kawaguchi, H. Kasugai, K. Samonji, H. Hagino, K. Orita, K. Yamanaka, M. Yuri, and S. Takigawa, IEEE J. Sel. Top. Quantum Electron. 17, 1412 (2011).CrossRefGoogle Scholar
  11. 11.
    M. Hempel, M. Ziegler, J.W. Tomm, T. Elsaesser, N. Michel, and M. Krakowski, Appl. Phys. Lett. 96, 251105 (2010).CrossRefGoogle Scholar
  12. 12.
    M. Hempel, J.W. Tomm, B. Stojetz, H. König, U. Strauss, and T. Elsaesser, Semicond. Sci. Technol. 30, 0720011 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Porowski, B. Sadovyi, S. Gierlotka, S.J. Rzoska, I. Grzegory, I. Petrusha, V. Turkevich, and D. Stratiichuk, J. Phys. Chem. Solids 85, 138 (2015).CrossRefGoogle Scholar
  14. 14.
    W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, and O. Shimomura, Nat. Mater. 2, 735 (2003).CrossRefGoogle Scholar
  15. 15.
    Y. Sin, Z. Lingley, M. Brodie, N. Presser, and S.C. Moss, Proc. SPIE 10086, 100860S1 (2017).CrossRefGoogle Scholar
  16. 16.
  17. 17.
    V.P. Vasil’ev and J.C. Gachon, Inorg. Mater. 42, 1176 (2006).CrossRefGoogle Scholar
  18. 18.
    M. Hempel, F. La Mattina, J.W. Tomm, U. Zeimer, R. Broennimann, and T. Elsaesser, Semicond. Sci. Technol. 26, 075020 (2011).CrossRefGoogle Scholar
  19. 19.
    J.H. Jacob, R. Petr, M.A. Jaspan, S.D. Swartz, M.T. Knapczyk, and A.M. Flusberg, Proc. SPIE 7198, 7198151 (2009).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Jens W. Tomm
    • 1
  • Robert Kernke
    • 1
  • Giovanna Mura
    • 2
  • Massimo Vanzi
    • 2
  • Martin Hempel
    • 3
  • Bruno Acklin
    • 4
  1. 1.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany
  2. 2.Department of Electrical and Electronic EngineeringUniversity of CagliariCagliariItaly
  3. 3.Fraunhofer IZMBerlinGermany
  4. 4.Mountain ViewUSA

Personalised recommendations