Investigation of Pulsed Thermoelectric Performance by Impedance Spectroscopy

  • S. BoldriniEmail author
  • A. Ferrario
  • A. Miozzo
Topical Collection: International Conference on Thermoelectrics 2018
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018


A widespread use of thermoelectric technology usually collides with their limited efficiency. Efforts to overcome this limitation face difficulties in decoupling the thermal conductivity from the electrical conductivity (because of the Wiedeman–Franz law) and to obtain simultaneously high values of electrical conductivity and Seebeck coefficient (because of the Pisarenko relation). Some efforts to circumvent partially these limitations have been oriented to non-equilibrium solutions. These have been proved for cooling and in the last decade have been proposed as a means to increase power conversion from time varying thermal gradients. Another possibility that has been explored is the enhancement of thermal conversion efficiency obtained by periodically modulating the electronic load applied to a thermoelectric generator. Using impedance spectroscopy and pulsed loads applied to thermoelectric modules under adiabatic and non-adiabatic test conditions, we explored the role of several experimental parameters on the output power and conversion efficiency. We discuss operating limits and realistic perspectives of thermoelectric pulsed load application. Moreover, we examined the difference between air and vacuum impedance measurement for a thermoelectric module figure of merit determination and discussed the possible use of impedance spectroscopy as a tool for the study of thermal contact resistance by means of direct measurements under operating conditions.


Pulsed thermoelectric impedance spectroscopy conversion efficiency increase thermal contact characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.B. Vining, Nat. Mater. 8, 83 (2009).CrossRefGoogle Scholar
  2. 2.
    G.J. Snyder, J.P. Fleurial, T. Caillat, R. Yang, and G. Chen, J. Appl. Phys. 92, 1564 (2002).CrossRefGoogle Scholar
  3. 3.
    Y. Yan and J.A. Malen, Energy Environ. Sci. 6, 1267 (2013).CrossRefGoogle Scholar
  4. 4.
    O. Yamahsita, H. Odahara, and K. Satou, J. Appl. Phys. 101, 023704 (2007).CrossRefGoogle Scholar
  5. 5.
    G. Min, AIP Conf. Proc. 1449, 447 (2012).CrossRefGoogle Scholar
  6. 6.
    I.S. McKay and E.N. Wang, Thermal pulse energy harvesting. Energy 57, 632 (2013).CrossRefGoogle Scholar
  7. 7.
    J.G. Stockholm, C. Goupil, P. Maussion, and H. Ouerdane, J. Electron. Mater. 44, 1768 (2015).CrossRefGoogle Scholar
  8. 8.
    A.D. Downey, T.P. Hogan, and B. Cook, Rev. Sci. Instrum. 78, 093904 (2007).CrossRefGoogle Scholar
  9. 9.
    A. De Marchi and V. Giaretto, Rev. Sci. Instrum. 82, 034901 (2011).CrossRefGoogle Scholar
  10. 10.
    A. De Marchi and V. Giaretto, Rev. Sci. Instrum. 82, 104904 (2011).CrossRefGoogle Scholar
  11. 11.
    A. De Marchi, V. Giaretto, S. Caron, and A. Tona, J. Electron. Mater. 42, 2067 (2013).CrossRefGoogle Scholar
  12. 12.
    J. García-Cañadas and G. Min, J. Electron. Mater. 43, 2411 (2014).CrossRefGoogle Scholar
  13. 13.
    J. García-Cañadas and G. Min, J. Appl. Phys. 116, 174510 (2014).CrossRefGoogle Scholar
  14. 14.
    J. García-Cañadas and G. Min, AIP Adv. 6, 035008 (2016).CrossRefGoogle Scholar
  15. 15.
    B. Beltràn-Pitarch, J. Prado-Gonjal, A.V. Powell, P. Ziolowsky, and J. García-Cañadas, J. Appl. Phys. 124, 025105 (2018).CrossRefGoogle Scholar
  16. 16.
    B. Beltràn-Pitarch and J. García-Cañadas, J. Appl. Phys. 123, 084505 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.CNR – ICMATEPaduaItaly

Personalised recommendations