Advertisement

Theoretical Considerations on the Optimal Performance of Sub-100 Nanometer Top-Gated Graphene Field-Effect Transistors

  • V. Nam DoEmail author
  • H. Anh Le
  • V. Thieu Vu
Article
  • 20 Downloads

Abstract

The operation and performance of top-gated sub-100 nanometer graphene channel field-effect transistors were investigated. The device model is designed for graphene with a narrow energy band gap epitaxially grown on the SiC substrate. The issue of graphene-metallic lead coupling is appropriately taken into account. By assuming the graphene-metal physisorption contact, a self-consistent calculation reproduces two regions of high carrier density at the ends of the graphene channels underneath the metallic leads according to the charge transferred effect between the metallic lead surface and graphene. The charge carrier densities in these source and drain regions, however, are not pinned, but vary with respect to the drain and gate voltages. It is shown that, in general, the graphene channel supports the ambipolar characteristics for all device samples, but for the samples with the channels shorter than 40 nm, the current-voltage characteristic takes the exponential law. Particularly, the current saturation with a rather small output conductance of 126 S/m was observed in a sufficiently large range of drain voltage due to the dominance of the thermionic emission and conventional tunneling mechanisms to the band-to-band tunneling. A rough assessment of the device performance was also carried out. It reveals an extremely high cutoff frequency in the order of \(10^3\hbox { GHz}\) and a linear scaling rule for transistors with the channel length longer than 40 nm. The behaviour and magnitude of these quantities are consistent with an experimental study of sub-100 nm devices fabricated using the self-alignment technique.

Keywords

Graphene top-gated transistor GFET performance graphene-metal contact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by National Foundation for Science and Technology Development (Nafosted) under project No. 103.01-2016.62.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  3. 3.
    Y.-M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2009).CrossRefGoogle Scholar
  4. 4.
    Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, and Ph. Avouris, Science 327, 662 (2010).CrossRefGoogle Scholar
  5. 5.
    L. Liao, J. Bai, R. Cheng, Y.C. Lin, S. Jiang, Y. Qu, Y. Huang, and X. Duan, Nano Lett. 10, 3952 (2010).CrossRefGoogle Scholar
  6. 6.
    H. Lyu, Q. Lu, J. Liu, X. Wu, J. Zhang, J. Li, J. Niu, Z. Yu, H. Wu, and H. Qian, Sci. Rep. 6, 35717 (2016).Google Scholar
  7. 7.
    F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).CrossRefGoogle Scholar
  8. 8.
    P.R. Wallace, Phys. Rev. 71, 622 (1947).CrossRefGoogle Scholar
  9. 9.
    J.C. Slonczewski and P.R. Weiss, Phys. Rev. 109, 272 (1958).CrossRefGoogle Scholar
  10. 10.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)Google Scholar
  11. 11.
    K. Nagashio, T. Nishimura, K. Kita, and K. Toriumi, Appl. Phys. Lett. 97, 143514 (2010).CrossRefGoogle Scholar
  12. 12.
    F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris, Nat. Nanotechnol. 6, 179 (2011).CrossRefGoogle Scholar
  13. 13.
    J.S. Moon, M. Antcliffe, H.C. Seo, D. Curtis, S. Lin, A. Schmitz, I. Milosavljevic, A.A. Kiselev, R.S. Ross, D.K. Gaskill, P.M. Campbell, R.C. Fitch, K.-M. Lee, and P. Asbeck, Appl. Phys. Lett. 100, 203512 (2012).CrossRefGoogle Scholar
  14. 14.
    L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, and C.R. Dean, Science 342, 614617 (2013).Google Scholar
  15. 15.
    J.T. Smith, A.D. Franklin, D.B. Farmer, and C.D. Dimitrakopoulos, ACS Nano 7, 3661 (2013).CrossRefGoogle Scholar
  16. 16.
    T. Cusati, G. Fiori, A. Gahoi, V. Passi, M.C. Lemme, A. Fortunelli, and G. Iannaccone, Sci. Rep. 7, 5109 (2017).CrossRefGoogle Scholar
  17. 17.
    G. Fiori and G. Iannaccone, IEEE Elecron Device Lett. 28, 760 (2007).CrossRefGoogle Scholar
  18. 18.
    G. Liang, N. Neophytou, M.S. Lundstrom, and D.E. Nikonov, J. Appl. Phys. 102, 054307 (2007).CrossRefGoogle Scholar
  19. 19.
    G. Liang, N. Neophytou, D.E. Nikonov, and M.S. Lundstrom, IEEE Trans. Electron Devices 54, 677 (2007).CrossRefGoogle Scholar
  20. 20.
    Y. Ouyang, Y. Yoon, J.K. Fodor, and J. Guo. Appl. Phys. Lett. 89, 203107 (2006).CrossRefGoogle Scholar
  21. 21.
    Y. Ouyang, P. Campbel, and J. Guo. Appl. Phys. Lett. 92, 063120 (2008).CrossRefGoogle Scholar
  22. 22.
    L.F. Mao, X.J. Li, Z.O. Wang, and J.Y. Wang, IEEE Electron Device Lett. 29, 1047 (2008).CrossRefGoogle Scholar
  23. 23.
    Y. Yoon and J. Guo. Appl. Phys. Lett. 91, 073103 (2007)CrossRefGoogle Scholar
  24. 24.
    D. Basu, M.J. Gilbert, L.F. Register, S.K. Banerjee, and A.H. MacDonald, Appl. Phys. Lett. 92, 042114 (2008).CrossRefGoogle Scholar
  25. 25.
    I. Deretzis, G. Fiori, G. Iannaccone, and A. La Magna, Phys. Rev. B 82, 161413(R) (2010).CrossRefGoogle Scholar
  26. 26.
    Y. Yoon, G. Fiori, S. Hong, G. Iannaccone, and J. Guo, IEEE Trans. Electron Device 55, 2314 (2008)CrossRefGoogle Scholar
  27. 27.
    D. Jiménez, Nanotechnology 19, 345204 (2008).CrossRefGoogle Scholar
  28. 28.
    L.-F. Mao, H. Ning, Z.-L. Huo, and H.-Y. Wang, Sci. Rep. 5, 18307 (2015).CrossRefGoogle Scholar
  29. 29.
    B. Huard, N. Stander, J.A. Sulpizio, and D. Goldhaber-Gordon, Phys. Rev. B 78, 121402(R) (2008).CrossRefGoogle Scholar
  30. 30.
    P. Blake, R. Yang, S.V. Morozov, F. Schedin, L.A. Ponomarenko, A.A. Zhukov, I.V. Grigorieva, K.S. Novoselov, and A.K. Geim, Solid State Commun. 149, 1068 (2009).CrossRefGoogle Scholar
  31. 31.
    R. Golizadeh-Mojarad and S. Datta, Phys. Rev. B 79, 085410 (2009).CrossRefGoogle Scholar
  32. 32.
    S.M. Song, T.Y. Kim, O.J. Sul, W.C. Shin, and B.J. Cho. Appl. Phys. Lett. 104, 183506 (2014)Google Scholar
  33. 33.
    A. Gahoi, S. Wagner, A. Bablich, S. Kataria, V. Passi, and M.C. Lemme, Solid State Electron. 125, 234 (2016).CrossRefGoogle Scholar
  34. 34.
    G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, and P.J. Kelly, Phys. Rev. Lett. 101, 026803 (2008)Google Scholar
  35. 35.
    B. Uchoa, C.-Y. Lin, and A.H. Castro Neto, Phys. Rev. B 77, 035420 (2008).CrossRefGoogle Scholar
  36. 36.
    E.J.H. Lee, K. Balasubramanian, R.T. Weitz, M. Burghard, and K. Kern, Nat. Nanotechnol. 3, 486 (2008).CrossRefGoogle Scholar
  37. 37.
    C. Gong, G. Lee, B. Shan, E.M. Vogel, R.M. Wallace, and K. Cho, J. Appl. Phys. 108, 123711 (2010).CrossRefGoogle Scholar
  38. 38.
    S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).Google Scholar
  39. 39.
    S.Y. Zhou, D.A. Siegel, A.V. Fedorov, F. El Gabaly, A.K. Schmid, A.H. Castro Neto, D.H. Lee, and A. Lanzara, Nat. Mater. 7, 259 (2008).Google Scholar
  40. 40.
    E. Rotenberg, A. Bostwick, T. Ohta, J.L. McChesney, T. Seyller, and K. Horn, Nat. Mater. 7, 258 (2007).CrossRefGoogle Scholar
  41. 41.
    A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36 (2007).CrossRefGoogle Scholar
  42. 42.
    S. Kim, J. Ihm, H.J. Choi, and Y.W. Son, Phys. Rev. Lett. 100, 176802 (2008).CrossRefGoogle Scholar
  43. 43.
    X. Peng and R. Ahuja, Nano Lett. 8, 4464 (2008).CrossRefGoogle Scholar
  44. 44.
    N.T. Cuong, M. Otani, and S. Okada, Phys. Rev. Lett. 106, 106801 (2011).CrossRefGoogle Scholar
  45. 45.
    S. Barraza-Lopez, M. Vanevic, M. Kindermann, and M.Y. Chou, Phys. Rev. Lett. 104, 076807 (2010).CrossRefGoogle Scholar
  46. 46.
    D.P. DiVincenzo and E.J. Mele, Phys. Rev. B 29, 1685 (1984).Google Scholar
  47. 47.
    V.N. Do and P. Dollfus, J. Phys. Condens. Matter 22, 425301 (2010).Google Scholar
  48. 48.
    N. Nemec, D. Tomanek, and G. Cuniberti, Phys. Rev. B 77, 125420 (2008).CrossRefGoogle Scholar
  49. 49.
    V.N. Do, V.H. Nguyen, P. Dollfus, and A. Bournel, J. Appl. Phys. 104, 063708 (2008)Google Scholar
  50. 50.
    M.P. Lopez Sancho, J.M. Lopez Sancho, and J. Rubio, J. Phys. F Met. Phys. 14, 1205 (1984)Google Scholar
  51. 51.
    D.S. Fisher and P.A. Lee, Phys. Rev. B 23, 6851 (1981).CrossRefGoogle Scholar
  52. 52.
    Q. Ran, M. Gao, X. Guan, Y. Wang, and Z. Yu, Appl. Phys. Lett. 94, 103511 (2009)Google Scholar
  53. 53.
    P. Zhao, Q. Zhang, D. Iena, and S.O. Koswatta, IEEE Trans. Electron Devices 58, 3170 (2011).CrossRefGoogle Scholar
  54. 54.
    S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 89, 106801 (2002).CrossRefGoogle Scholar
  55. 55.
    R. Nouchi and K. Tanigaki, Appl. Phys. Lett. 96, 253503 (2010).CrossRefGoogle Scholar
  56. 56.
    P. Zhao, J. Chauhan, and J. Guo, Nano Lett. 9, 684 (2009).CrossRefGoogle Scholar
  57. 57.
    P. Michetti, M. Cheli, and G. Iannaccone, Appl. Phys. Lett. 96, 133508 (2010).CrossRefGoogle Scholar
  58. 58.
    G. Gua, S. Nie, R.M. Feenstra, R.P. Devaty, W.J. Choyke, W.K. Chan, and M.G. Kane, Appl. Phys. Lett. 90, 253507 (2007).CrossRefGoogle Scholar
  59. 59.
    Y.Q. Wu, P.D. Ye, M.A. Capano, Y. Xuan, Y. Sui, M. Qi, J.A. Cooper, T. Shen, D. Pandey, G. Prakash, and R. Reifenberger, Appl. Phys. Lett. 92, 092102 (2008).CrossRefGoogle Scholar
  60. 60.
    J.S. Moon, D. Curtis, S. Bui, M. Hu, D.K. Gaskill, J.L. Tedesco, P. Asbeck, G.G. Jernigan, B.L. VanMil, R.L. Myers-Ward, C.R. Eddy, P.M. Campbell, and X. Weng, IEEE Electron Device Lett. 31, 260 (2010).CrossRefGoogle Scholar
  61. 61.
    I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, and K.L. Shepard, Nat. Nanotechnol. 3, 654 (2008).CrossRefGoogle Scholar
  62. 62.
    I. Meric, C.R. Dean, A.F. Young, N. Baklitskaya, N.J. Trenblay, C. Nuckolls, P. Kim, and K.L. Shepard, Nano Lett. 11, 1093 (2011).CrossRefGoogle Scholar
  63. 63.
    A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Phys. Rev. Lett. 103, 076601 (2009).CrossRefGoogle Scholar
  64. 64.
    A.M. DaSilva, K. Zou, J.K. Jain, and J. Zhu, Phys. Rev. Lett. 104, 236601 (2010).CrossRefGoogle Scholar
  65. 65.
    C. Rutherglen, D. Jain, and P. Burke, Nat. Nanotechnol. 4, 811 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Phenikaa Institute for Advanced Study (PIAS)Phenikaa UniversityHanoiVietnam
  2. 2.School of Information and Communication TechnologyHUSTHanoiVietnam

Personalised recommendations