Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1553–1561 | Cite as

Graphite to Graphene: Green Synthesis Using Opuntia ficus-indica

  • G. Calderón-AyalaEmail author
  • M. Cortez-ValadezEmail author
  • M. Acosta-Elías
  • P. G. Mani-Gonzalez
  • Ma.  E. Zayas
  • S. J. Castillo
  • M. Flores-Acosta
Article
  • 22 Downloads

Abstract

Green synthesis promotes partial or total substitution of chemicals that are potentially harmful to the environment with more friendly ones and is also concerned with decreasing energy consumption. In this study, commercial graphite (1.0 g) was mixed with Opuntia ficus-indica (Ofi) (1.0 ml) and 50 ml deionized water in a glass beaker. The mixture was sonicated in an ultrasonic bath for 30 min at room temperature. Subsequently, the supernatant was transferred to a glass substrate and dried. To characterize the graphitic nanostructure, we used Raman spectroscopy, x-ray diffraction (XRD) analysis, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Raman spectroscopy was used to characterize the crystal structure. The ratio of the relative intensity of the G and 2D peaks in the Raman spectrum followed by deconvolution of the 2D band suggested that four and five layers of graphene were formed. The XRD profile showed a strong decrease in the (002) peak intensity with a thickness of 0.34 nm characterizing the graphite structure. The C:O ratio measured by XPS showed a degree of oxidation comparable to reports on few-layer graphene (FLG), and AFM images showing the roughness of the sheets revealed small steps of 1 nm with length of about 100 nm. Structural and morphological properties were analyzed by TEM. We found thin graphene layers of about one micron in extent; at 10-nm scale, structures of two, three, four, and five layers were identified. These results suggest that this method can be used for synthesis of FLG via an environmentally friendly route without use of acids or strong chemical oxidants.

Keywords

Green synthesis few-layer graphene sonication Opuntia ficus-indica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Special thanks are due to the Laboratory of Transmission Electron Microscopy, Universidad de Sonora for support. We also appreciate the support given by PRODEP through C.A. UNISON-CA-188 project.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11664_2018_6918_MOESM1_ESM.pdf (164 kb)
Supplementary material 1 (PDF 164 kb)

References

  1. 1.
    V. Sharma, A. Garg, and S.C. Sood, Int. J. Eng. Trends Technol. (IJETT) 26, 2231 (2015).Google Scholar
  2. 2.
    J.A. Garlow, L.K. Barrett, L. Wu, K. Kisslinger, Y. Zhu, and J.F. Pulecio, Sci. Rep. 6, 1 (2016).Google Scholar
  3. 3.
    D.H. Seo, S. Pineda, J. Fang, Y. Gozukara, S. Yick, A. Bendavid, S.K.H. Lam, A.T. Murdock, A.B. Murphy, Z.J. Han, and K. Ostrikov, Nat. Commun. 8, 14217 (2017).Google Scholar
  4. 4.
    P. Garg, P. Gupta, D. Kumar, and O. Parkash, J. Mater. Environ. Sci. 7, 1461 (2016).Google Scholar
  5. 5.
    A. Alexander and A. Baladin, Nat. Mater. 10, 569 (2011).Google Scholar
  6. 6.
    Y. Kim, J. Park, J. Kang, J. Yoo, K. Choi, E.S. Kim, J.-B. Choi, C. Hwang, K.S. Novoselov, and B.H. Hong, Nanoscale 6, 9545 (2014).Google Scholar
  7. 7.
    H. Liu, L. Zhang, Y. Guo, C. Cheng, L. Yang, L. Jiang, Y. Gui, H. Weping, Y. Liu, and D. Zhu, J. Mater. Chem. C 1, 3104 (2013).Google Scholar
  8. 8.
    N. Ivan, Yakovkin. Cryst. 6, 143 (2016).Google Scholar
  9. 9.
    R. Atif, I. Shyha, and F. Inam, Polymers 8, 281 (2016).Google Scholar
  10. 10.
    Y. Jung, J. Shen, and J.J. Cha, Nano Convergence 1, 18 (2014).Google Scholar
  11. 11.
    L. Cheng, J.D. Doecke, R.A. Sharples, V.L. Villemagne, C.J. Fowler, A. Rembach, R.N. Martins, C.C. Rowe, S.L. Macaulay, C.L. Masters, and A.F. Hill, Mol. Psychiatry 20, 1188 (2015).Google Scholar
  12. 12.
    E. Rokhsat and O. Akhavan, Appl. Surf. Sci. 371, 590 (2016).Google Scholar
  13. 13.
    K. He, G. Chen, G. Zeng, M. Peng, Z. Huang, J. Shi, and T. Huang, Nanoscale 9, 5370 (2017).Google Scholar
  14. 14.
    D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, and S. Sanchez, Nano Lett. 16, 2860 (2016).Google Scholar
  15. 15.
    S. Yang, C. Jiang, and S.-H. Wei, Appl. Phys. Rev. 4, 021304 (2017).Google Scholar
  16. 16.
    G. Liu, W. Jin, and X. Nanping, Chem. Soc. Rev. 44, 5016 (2015).Google Scholar
  17. 17.
    Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, and R.B. Kaner, Chem. Soc. Rev. 44, 3639 (2015).Google Scholar
  18. 18.
    G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, and T. Lee, Nanotechnology 23, 112001 (2012).Google Scholar
  19. 19.
    S. Kumar, W. Ahlawat, R. Kumar, and N. Dilbaghi, Biosens. Bioelectron. 70, 498 (2015).Google Scholar
  20. 20.
    H.T. Bointon, S. Russo, and M.F. Graciun, IET Circuits Dev. Syst. 9, 403 (2015).Google Scholar
  21. 21.
    G. Mittal, V. Dhand, K. YopRhee, S.-J. Park, and W.R. Lee, J. Ind. Eng. Chem. 21, 11 (2015).Google Scholar
  22. 22.
    H.K. Chae, D.Y. Siberio-Pérz, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, and O.M. Yaqhi, Nature 427, 523 (2004).Google Scholar
  23. 23.
    F.H.L. Koppens, T. Mueller, P. Avoiris, A.C. Ferrari, M.S. Vitiello, and M. Polini, Nature 9, 780 (2014).Google Scholar
  24. 24.
    T. Palacios, A. Hsu, and H. Wang, IEEE Commun. Mag. 48, 122 (2010).Google Scholar
  25. 25.
    G. Kakavelakis, A.E. del Rio Castillo, V. Pellegrini, A. Ansaldo, P. Tzourmpakis, R. Brescia, M. Pratos, E. Stratakis, E. Kymakis, and F. Bonaccorso, ACS Nano 11, 3517 (2017).Google Scholar
  26. 26.
    R. Lv, G. Chen, Q. Li, A. McCreary, A. Botello-Méndez, S.V. Morozov, L. Liang, X. Declerck, N. Perea-López, D.A. Cullen, S. Feng, A.L. Elías, R. Cruz-Silva, K. Fujisawa, M. Endo, F. Kang, J.-C. Charlier, V. Meunier, M. Pan, A.R. Harutyunyan, K.S. Novoselov, and M. Terrones, PNAS 112, 14527 (2015).Google Scholar
  27. 27.
    B.-R. Adhikari, M. Govindhan, and A. Chen, Electrochem. Acta 162, 198 (2015).Google Scholar
  28. 28.
    L. Huang, Y. Wang, J. Tang, Y. Wang, J. Liu, J. Jiao, and W. Wang, Int. J. Electrochem. Sci. 11, 398 (2016).Google Scholar
  29. 29.
    H. Zhang, Q. Li, J. Huang, Y. Du, and S.C. Ruan, Sensors 16, 1152 (2016).Google Scholar
  30. 30.
    S.S. Mohd, K. Khan, and M. Pathak, Renew. Sustain. Energy 49, 192 (2015).Google Scholar
  31. 31.
    B.C. Brodie, Philos. Trans. R. Soc. Lond. 149, 249 (1859).Google Scholar
  32. 32.
    L. Staudenmaier and L. Ber, Deut. Chem. Ges. 31, 1481 (1898).Google Scholar
  33. 33.
    W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).Google Scholar
  34. 34.
    S. Chen, R. Ding, X. Ma, L. Xue, X. Lin, X. Fan, and Z. Luo, Polymers 8, 78 (2016).Google Scholar
  35. 35.
    J. Chen, Y. Li, L. Huang, C. Li, and G. Shi, Carbon 81, 826 (2015).Google Scholar
  36. 36.
    K. Urbas, M. Aleksandrzak, M. Jedrzejczak, R. Rakoczy, X. Chen, and E. Mijowska, Nanoscale Res. Lett. 9, 656 (2014).Google Scholar
  37. 37.
    N. Gan, J. Zhang, S. Lin, N. Long, T. Li, and Y. Cao, Materials 7, 6028 (2014).Google Scholar
  38. 38.
    J. Song, X. Wang, and C.-T. Chang, J. Nanomater. 1, 1 (2014).Google Scholar
  39. 39.
    K. El-Mostafa, Y. El Kharrassi, A. Badreddine, P. Andreoletti, J. Vamecq, M.S. El Kebbaj, N. Latruffe, G. Lizard, B. Nasser, and M. Cherkaoui-Malki, Molecules 19, 14879 (2014).Google Scholar
  40. 40.
    N.N. Nyangiwe, M. Khenfouch, F.T.T.K. Nukwa, L. Kotsedi, and M. Maaza, Graphene 4, 54 (2015).Google Scholar
  41. 41.
    S.S. Low, M.T.T. Tan, P.S. Khiew, H.-S. Loh, and W.S. Chiu, Mater. Technol. 49, 837 (2015).Google Scholar
  42. 42.
    G.S. Shmavonyan, G.G. Sevoyan, and V.M. Aroutiounian, Armen. J. Phys. 6, 1 (2015).Google Scholar
  43. 43.
    M. Noroozi, A. Zakaria, S. Radiman, and Z. Abdul Wahab, PLoS ONE 4, 1 (2016).Google Scholar
  44. 44.
    B. Jayasena and S. Subbiah, Nanoscale Res. Lett. 6, 95 (2011).Google Scholar
  45. 45.
    D. Zhan, L. Sun, Z.H. Ni, L. Liu, X.F. Fan, Y. Wang, T. Yu, Y.M. Lam, W. Huang, and Z.X. Shen, Adv. Funct. Mater. 20, 3504 (2010).Google Scholar
  46. 46.
    J. Chen, B. Yao, C. Li, and G. Shi, Carbon 64, 225 (2013).Google Scholar
  47. 47.
    M. Khenfouch, R.M. Ndimba, A. Diallo, S. Khamlich, M. Hamzah, M.S. Dhlamini, B.M. Mothudi, M. Baitoul, V.V. Srinivasu, and M. Maaza, Green Chem. Lett. Rev. 1, 122 (2016).Google Scholar
  48. 48.
    L. Torres, L.G. Armas, and A.C. Seabra, Graphene 3, 1 (2014).Google Scholar
  49. 49.
    Z. Wang, G. Xian, and X.-L. Zhao, Constr. Build. Mater. 161, 634 (2018).Google Scholar
  50. 50.
    Z. Sun, X. Huang, F. Liu, X. Yang, C. Rösler, R.A. Fischer, M. Muhler, and W. Schuhmann, Chem. Commun. 50, 10382 (2014).Google Scholar
  51. 51.
    V. Babaahmadi, M. Montazer, and W. Gao, Colloids Surf. A Physicochem. Eng. Asp. 545, 16 (2018).Google Scholar
  52. 52.
    M. Cabello, X. Bai, T. Chyrtka, G.F. Ortiz, P. Lavela, R. Alcántara, and J.L. Tirado, J. Electrochem. Soc. 164, 3804 (2017).Google Scholar
  53. 53.
    L. Baraton, Z.B. He, C.S. Lee, C.S. Cojocaru, M. Châtelet, J.-L. Maurice, Y.H. Lee, and D. Pribat, IOP Publ. 96, 46003 (2011).Google Scholar
  54. 54.
    X. Li, J. Li, Y. Gao, Y. Kuang, J. Shi, and B. Xu, J. Am. Chem. Soc. 132, 17707 (2010).Google Scholar
  55. 55.
    D. Pierucci, T. Brumme, J.C. Girard, M. Calandra, M.G. Silly, and F. Sirotti, Sci. Rep. 6, 33487 (2016).Google Scholar
  56. 56.
    A.H. Al-Marri, M. Khan, M. Khan, S.F. Adil, A. Al-Warthan, H.Z. Alkhathlan, W. Tremel, J.P. Labis, M. Rafiq, H. Siddiqui, and M.N. Tahir, Int. J. Mol. Sci. 16, 1131 (2015).Google Scholar
  57. 57.
    P. Sutradhar and M. Saha, J. Exp. Nanosci. 11, 314 (2016).Google Scholar
  58. 58.
    F. Lin, X. Tong, Y. Wang, J. Bao, and Z.M. Wang, Nanoscale Res. Lett. 10, 435 (2015).Google Scholar
  59. 59.
    F. Le Normand, M. Benyahia, C. Speisser, D. Muller, F. Aweke, G. Gutierrez, J. Arabski, and G. Morvan, Graphene 4, 21 (2015).Google Scholar
  60. 60.
    M. Cortez-Valadez, J.G. Bocarando-Chacon, A.R. Hernández-Martínez, R. Hurtado, R. Britto, R.A.B. Alvarez, J.F. Roman-Zamorano, J. Flores-Valenzuela, R. Gámez-Corrales, H. Arizpe-Chávez, and M. Flores-Acosta, Nanosci. Nanotechnol. Lett. 6, 580 (2014).Google Scholar
  61. 61.
    H. Park, S.H. Noh, J.H. Lee, W.J. Jaung, S.G. Lee, and T.H. Han, Sci. Rep. 5, 14163 (2015).Google Scholar
  62. 62.
    J.G. Bocarando-Chacon, M. Cortez-Valadez, D. Vargas-Vazquez, F.R. Melgarejo, M. Flores-Acosta, P.G. Mani-Gonzalez, E. Leon-Sarabia, A. Navarro-Badilla, and R. Ramírez-Bon, Physica E 59, 15 (2014).Google Scholar
  63. 63.
    G. Calderón-Ayala, M. Cortez-Valadez, P.G. Mani-Gonzalez, R.B. Hurtado, J.I. Contreras-Rascón, R.C. Carrillo-Torres, M.E. Zayas, S.J. Castillo, A.R. Hernández-Martínez, and M. Flores-Acosta, Carbon Lett. 21, 93 (2017).Google Scholar
  64. 64.
    A.C. Ferrari and D.M. Basko, Nat. Nanotechnol. 8, 235 (2013).Google Scholar
  65. 65.
    A.C. Ferrari and J. Robertson, J. Phys. Rev. 61, 14095 (2000).Google Scholar
  66. 66.
    P. Singh, J. Bahadur, and K. Pal, Graphene 6, 61 (2017).Google Scholar
  67. 67.
    S.N. Alam, N. Sharma, and L. Kumar, Graphene 6, 1 (2017).Google Scholar
  68. 68.
    I.-W.P. Chen, C.-Y. Huang, S.-H.S. Jhou, and Y.-W. Zhang, Sci. Rep. 4, 3928 (2014).Google Scholar
  69. 69.
    S. Ahadian, M. Estili, V.J. Surya, J. Ramón-Azcón, X. Liang, H. Shiku, M. Ramalingam, T. Matsue, Y. Sakka, H. Bae, K. Nakajima, and Y. Kawazoe, Nanoscale 7, 6436 (2015).Google Scholar
  70. 70.
    L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rep. 473, 51 (2009).Google Scholar
  71. 71.
    C.A. Ferrari, Solid State Commun. 143, 47 (2007).Google Scholar
  72. 72.
    S. Gayathri, P. Jayabal, M. Kottaisamy, and V. Ramakrishnan, AIP Adv. 4, 027116 (2014).Google Scholar
  73. 73.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).Google Scholar
  74. 74.
    H. Maocong, Z. Yao, and X. Wang, AIMS Mater. Sci. 4, 755 (2017).Google Scholar
  75. 75.
    Z. Lin, P.S. Karthik, M. Hada, T. Nishikawa, and Y. Hayashi, Nanomaterials 7, 125 (2017).Google Scholar
  76. 76.
    A. Gupta, G. Chen, P. Joshi, and S. Tadigadapa, Nano Lett. 6, 2667 (2006).Google Scholar
  77. 77.
    M. Begliarbekov, O. Sul, S. Kalliakos, E.-H. Yang, and S. Strauf, Appl. Phys. Lett. 97, 122106 (2010).Google Scholar
  78. 78.
    I.-Y. Jeon, Y.-R. Shin, G.-J. Sohn, H.-J. Choi, S.-Y. Bae, J. Mahmood, S.-M. Jung, J.-M. Seo, D.W. Chang, L. Dai, and J.-B. Baek, PNAS 109, 5588 (2012).Google Scholar
  79. 79.
    C. Zhong, J.-Z. Wang, D. Wexler, and H.-K. Liu, Carbon 66, 637 (2014).Google Scholar
  80. 80.
    P. Kun, F. Weber, and C. Balazsi, Cent. Eur. J. Chem. 9, 47 (2011).Google Scholar
  81. 81.
    A. Ariharan, B. Viswanathan, and V. Nandhakumar, Graphene 6, 41 (2017).Google Scholar
  82. 82.
    M. Zhou, T. Tian, X. Li, X. Sun, J. Zhang, P. Cui, J. Tang, and L.-C. Qin, Int. J. Electrochem. Sci. 9, 810 (2014).Google Scholar
  83. 83.
    L. Shahriary and A.A. Athawale, IJREEE 2, 58 (2014).Google Scholar
  84. 84.
    M.V. Narayana and S.N. Jammalamadaka, Graphene 5, 73 (2016).Google Scholar
  85. 85.
    M.R.Y.A. Yadav, IET Nanobiotechnol. 7, 117 (2013).Google Scholar
  86. 86.
    H.-N. Chang, S. Sarkar, J.R. Baker, and T.B. Norris, Mater. Express 6, 3242 (2016).Google Scholar
  87. 87.
    L. Ren, F. Yang, C. Wang, Y. Li, H. Liu, T. Zhiqiang, L. Shang, Z. Liu, J. Gao, and C. Xu, RSC Adv. 4, 63048 (2014).Google Scholar
  88. 88.
    D.H. Wang, Y. Hu, J.J. Zhao, L.L. Zeng, X.M. Tao, and W. Chen, J. Mater. Chem. A 41, 17415 (2014).Google Scholar
  89. 89.
    G. Wang, F. Qian, C.W. Saltikov, Y. Jiao, and Y. Li, Nano Res. 4, 563 (2011).Google Scholar
  90. 90.
    Z.-S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, and H.-M. Cheng, Carbon 47, 493 (2009).Google Scholar
  91. 91.
    D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr., and R.S. Rouff, Carbon 47, 145 (2009).Google Scholar
  92. 92.
    J.-C. Yoon, J. Hwang, P. Thiyagarajan, R.S. Ruoff, and J.-H. Jang, ACS Appl. Mater. Interfaces 9, 21457 (2017).Google Scholar
  93. 93.
    L. Tang, X. Li, R. Ji, K.S. Teng, G. Tai, J. Ye, C. Wei, and S.P. Lau, J. Mater. Chem. 22, 5676 (2012).Google Scholar
  94. 94.
    A. Ciesielski and P. Samori, Chem. Soc. Rev. 43, 381 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Departamento de Investigación en FísicaUniversidad de SonoraHermosilloMexico
  2. 2.Universidad Estatal de SonoraHermosilloMexico
  3. 3.CONACYT - Departamento de Investigación en FísicaUniversidad de SonoraHermosilloMexico
  4. 4.Instituto de Ingeniería y Tecnología, Departamento de Física y MatemáticasUniversidad Autónoma de Ciudad Juárez, Ave.ChihuahuaMexico

Personalised recommendations