Advertisement

Conjugate Electrospinning Construction of Microyarns with Synchronous Color-Tuned Photoluminescence and Tunable Electrical Conductivity

  • Libing Fan
  • Qianli MaEmail author
  • Jiao Tian
  • Dan Li
  • Xue Xi
  • Xiangting DongEmail author
  • Wensheng Yu
  • Jinxian Wang
  • Guixia Liu
Article

Abstract

Here, we report a strategy for constructing {[Tb(BA)3phen + Eu(BA)3phen]/PAN}//[PANI/PAN] (BA = benzoic acid, phen = phenanthroline, PANI = polyaniline, PAN = polyacrylonitrile) hetero-structured microyarns simultaneously endowed with the bi-functionality of tunable luminescence colors and electrical conductivity by using a conjugate electrospinning technique. The obtained hetero-structured microyarns are composed of [Tb(BA)3phen + Eu(BA)3phen]/PAN luminescent nanofibers and PANI/PAN electrically conductive nanofibers, realizing efficient separation of dark-colored PANI from rare earth (RE) complexes, and thus the enhanced luminescent performance is obtained. Under 276-nm ultraviolet light excitation, the emitting light color of the hetero-structured microyarns can be adjusted in a broad range of green–yellow–red by changing the proportion of RE complexes. The electrical conductivity of the hetero-structured microyarns also can be modulated via tuning the percentages of PANI. These hetero-structured microyarns, by virtue of their luminescent properties and electrical performance, are expected to be applied in multifunctional applications.

Keywords

Microyarn conjugate electrospinning photoluminescence electrical properties 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. Chen and Z.L. Wang, Joule 1, 480 (2017).Google Scholar
  2. 2.
    N.N. Zhang, J. Chen, Y. Huang, W.W. Guo, J. Yang, J. Du, X. Fan, and C.Y. Tao, Adv. Mater. 28, 263 (2016).Google Scholar
  3. 3.
    J. Chen, Y. Huang, N.N. Zhang, H.Y. Zou, R.Y. Liu, C.Y. Tao, X. Fan, and Z.L. Wang, Nat. Energy 1, 16138 (2016).Google Scholar
  4. 4.
    N.N. Zhang, C.Y. Tao, X. Fan, and J. Chen, J. Mater. Res. 32, 1628 (2017).Google Scholar
  5. 5.
    Y.C. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.C. Hsu, L.L. Cai, B.F. Liu, Y.Y. Zhu, G.M. Zhou, D.S. Wu, H.R. Lee, S.H. Fan, and Y. Cui, Nat. Sustain. 1, 105 (2018).Google Scholar
  6. 6.
    Z.M. Lin, J. Yang, X.S. Li, Y.F. Wu, W. Wei, J. Liu, J. Chen, and J. Yang, Adv. Funct. Mater. 28, 1704112 (2018).Google Scholar
  7. 7.
    L.L. Cai, A.Y. Song, P.I. Wu, P.C. Hsu, Y.C. Peng, J. Chen, C. Liu, P.B. Catrysse, Y.Y. Liu, A.K. Yang, C.X. Zhou, C.Y. Zhou, S.H. Fan, and Y. Cui, Nat. Commun. 8, 496 (2017).Google Scholar
  8. 8.
    Z.M. Lin, J. Chen, and J. Yang, J. Nanomater. 2016, 56516613 (2016).Google Scholar
  9. 9.
    Z.L. Li, J. Chen, J.J. Zhou, L. Zheng, K.C. Pradel, X. Fan, H.Y. Guo, Z. Wen, M.H. Yeh, C.W. Yu, and Z.L. Wang, Nano Energy 22, 548 (2016).Google Scholar
  10. 10.
    R.Y. Liu, X. Kuang, J.N. Deng, Y.C. Wang, A.C. Wang, W.B. Ding, Y.C. Lai, J. Chen, P.H. Wang, Z.Q. Lin, H.J. Qi, B.Q. Sun, and Z.L. Wang, Adv. Mater. 30, 1705195 (2018).Google Scholar
  11. 11.
    G. Zhu, J. Chen, T.J. Zhang, Q.S. Jing, and Z.L. Wang, Nat. Commun. 5, 3426 (2014).Google Scholar
  12. 12.
    J. Chen, G. Zhu, W.Q. Yang, Q.S. Jing, P. Bai, Y. Yang, and T.C. Hou, Adv. Mater. 25, 6094 (2013).Google Scholar
  13. 13.
    J. Chen, J. Yang, Z.L. Li, X. Fan, Y.L. Zi, Q.S. Jing, H.Y. Guo, Z. Wen, K.C. Pradel, S.M. Niu, and Z.L. Wang, ACS Nano 9, 3324 (2015).Google Scholar
  14. 14.
    Z.L. Li, J. Chen, H.Y. Guo, X. Fan, Z. Wen, M.H. Yeh, C.W. Yu, X. Cao, and Z.L. Wang, Adv. Mater. 28, 2983 (2016).Google Scholar
  15. 15.
    Y. Wu, Q.S. Jing, J. Chen, P. Bai, J.J. Bai, G. Zhu, Y.J. Su, and Z.L. Wang, Adv. Funct. Mater. 25, 2166 (2015).Google Scholar
  16. 16.
    J. Chen, J. Yang, H.Y. Guo, Z.L. Li, L. Zheng, Y.J. Su, Z. Wen, X. Fan, and Z.L. Wang, ACS Nano 9, 12334 (2015).Google Scholar
  17. 17.
    Z.M. Lin, J. Chen, X.S. Li, Z.H. Zhou, K.Y. Meng, W. Wei, J. Yang, and Z.L. Wang, ACS Nano 11, 8830 (2017).Google Scholar
  18. 18.
    S.Y. Kuang, J. Chen, X.B. Cheng, G. Zhu, and Z.L. Wang, Nano Energy 17, 10 (2015).Google Scholar
  19. 19.
    J. Chen, G. Zhu, J. Yang, Q.S. Jing, P. Bai, W.Q. Yang, X.W. Qi, Y.J. Su, and Z.L. Wang, ACS Nano 9, 105 (2015).Google Scholar
  20. 20.
    L. Zheng, G. Cheng, J. Chen, L. Lin, J. Wang, Y.S. Liu, H.X. Li, and Z.L. Wang, Adv. Energy Mater. 5, 1501152 (2015).Google Scholar
  21. 21.
    Y. Lu and S. Ozcan, Nano Today 10, 417 (2015).Google Scholar
  22. 22.
    C.M. Park, K.H. Chu, J. Heo, N. Her, M. Jang, A. Son, and Y. Yoon, J. Hazard. Mater. 309, 133 (2016).Google Scholar
  23. 23.
    K. Chen, L. Ma, J.H. Wang, Z.Q. Cheng, D.J. Yang, Y.Y. Li, S.J. Ding, L. Zhou, and Q.Q. Wang, RSC Adv. 7, 26097 (2017).Google Scholar
  24. 24.
    L. Ma, K. Chen, F. Nan, J.H. Wang, D.J. Yang, L. Zhou, and Q.Q. Wang, Adv. Funct. Mater. 26, 6076 (2016).Google Scholar
  25. 25.
    J. Tian, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, Y. Yang, J.X. Wang, and G.X. Liu, RSC Adv. 6, 36180 (2016).Google Scholar
  26. 26.
    K. Lun, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, and G.X. Liu, J. Mater. Sci. Mater. Electron. 25, 5395 (2014).Google Scholar
  27. 27.
    M. Chen, J.H. Wang, Z.J. Luo, Z.Q. Cheng, Y.F. Zhang, X.F. Yu, L. Zhou, and Q.Q. Wang, RSC Adv. 6, 9612 (2016).Google Scholar
  28. 28.
    G.H. Du, P. Liu, W.W. Guo, Y.B. Han, J. Zhang, Z.W. Ma, J.B. Han, Z.L. Liu, and K.L. Yao, J. Mater. Chem. C 1, 7608 (2013).Google Scholar
  29. 29.
    F. Wang and X.G. Liu, Acc. Chem. Res. 47, 1378 (2014).Google Scholar
  30. 30.
    Y. Tian, Y. Wei, Y. Zhao, Z.W. Quan, G.G. Li, and J. Lin, J. Mater. Chem. C 4, 1281 (2016).Google Scholar
  31. 31.
    J. Jang, J.H. Oh, and G.D. Stucky, Angew. Chem. Int. Ed. 41, 4016 (2002).Google Scholar
  32. 32.
    P.H. Liu, S.H. Wu, Y. Zhang, H.G. Zhang, and X.H. Qin, Nanomaterials 6, 121 (2016).Google Scholar
  33. 33.
    A. Jasim, M.W. Ullah, Z.J. Shi, X. Lin, and G. Yang, Carbohydr. Polym. 163, 62 (2017).Google Scholar
  34. 34.
    P.P. Yu, X. Zhao, Y.Z. Li, and Q.H. Zhang, Appl. Surf. Sci. 393, 37 (2017).Google Scholar
  35. 35.
    P. Bandyopadhyay, T. Kuila, J. Balamurugan, T.T. Nguyen, N.H. Kim, and J.H. Lee, Chem. Eng. J. 308, 1174 (2017).Google Scholar
  36. 36.
    L. Kumar, I. Rawal, A. Kaur, and S. Annapoorni, Sens. Actuator B 240, 408 (2017).Google Scholar
  37. 37.
    Y.W. Liu, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, and G.X. Liu, Chem. Eng. J. 284, 831 (2016).Google Scholar
  38. 38.
    D. Li, Q.L. Ma, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, and G.X. Liu, Chem. Eng. J. 309, 230 (2017).Google Scholar
  39. 39.
    X.B. Li, Q.L. Ma, J. Tian, X. Xi, D. Li, X.T. Dong, W.S. Yu, X.L. Wang, J.X. Wang, and G.X. Liu, Nanoscale 9, 18918 (2017).Google Scholar
  40. 40.
    N. Lv, J.L. Zhang, G.M. Li, X. Wang, and J.Z. Ni, J. Phys. Chem. C 121, 11926 (2017).Google Scholar
  41. 41.
    H.Y. Wang, Y. Wang, Y. Yang, X. Li, and C. Wang, Mater. Res. Bull. 44, 408 (2009).Google Scholar
  42. 42.
    N. Lv, Z.G. Wang, W.Z. Bi, G.M. Li, J.L. Zhang, and J.Z. Ni, J. Mater. Chem. B 4, 4402 (2016).Google Scholar
  43. 43.
    N. Lu, C.L. Shao, X.H. Li, F.J. Miao, K.X. Wang, and Y.C. Liu, Appl. Surf. Sci. 391, 668 (2017).Google Scholar
  44. 44.
    S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, and H.Y. Kim, Mater. Sci. Eng. B 217, 36 (2017).Google Scholar
  45. 45.
    Z. Aytac, Z.I. Yildiz, F.K. Ayaci-Senirmak, T. Tekinay, and T. Uyar, Food Chem. 231, 192 (2017).Google Scholar
  46. 46.
    J.J. Xue, J.W. Xie, W.Y. Liu, and Y.N. Xia, Acc. Chem. Res. 50, 1976 (2017).Google Scholar
  47. 47.
    S.H. Wu, Y. Wang, P.N. Streubel, and B. Duan, Acta Biomater. 62, 102 (2017).Google Scholar
  48. 48.
    L. Tian, T. Yan, and Z.J. Pan, J. Mater. Sci. 50, 7137 (2015).Google Scholar
  49. 49.
    U. Ali, H. Niu, A. Abbas, H. Shao, and T. Lin, RSC Adv. 6, 30564 (2016).Google Scholar
  50. 50.
    C. Yao, X.S. Li, K.G. Neoh, Z.L. Shi, and E.T. Kang, Appl. Surf. Sci. 255, 3854 (2009).Google Scholar
  51. 51.
    X.Y. Zheng, W. Wang, S. Liu, J.L. Wu, F.F. Li, L. Cao, X.D. Liu, X.M. Mo, and C.Y. Fan, Mater. Sci. Eng. C 58, 1071 (2016).Google Scholar
  52. 52.
    X.L. Ma, L.Y. Zhang, J. Tan, Y.X. Qin, and H.B. Chen, J. Appl. Polym. Sci. 134, 44820 (2017).Google Scholar
  53. 53.
    X.R. Li, M.Y. Li, J. Sun, Y. Zhuang, J.J. Shi, D.W. Guan, Y.Y. Chen, and J.W. Dai, Small 122, 5009 (2016).Google Scholar
  54. 54.
    F. Mehrpouya, J. Foroughi, S. Naficy, J. Razal, and M. Naebe, Nanomaterials 7, 293 (2017).Google Scholar
  55. 55.
    L.B. Fan, Q.L. Ma, J. Tian, D. Li, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, and G.X. Liu, J. Mater. Sci. 53, 2290 (2018).Google Scholar
  56. 56.
    D.W. Li, X. Pan, B.B. Sun, T. Wu, W.M. Chen, C. Huang, Q.F. Ke, H.A. Ei-Hamshary, S.S. Al-Deyab, and X.M. Mo, J. Mater. Chem. B 3, 8823 (2015).Google Scholar
  57. 57.
    S.H. Wu, P.H. Liu, Y. Zhang, H.G. Zhang, and X.H. Qin, Sens. Actuator B 252, 697 (2017).Google Scholar
  58. 58.
    S.K. Nataraj, K.S. Yang, and T.M. Aminabhavi, Prog. Polym. Sci. 37, 487 (2012).Google Scholar
  59. 59.
    F.J. Miao, C.L. Shao, X.H. Li, N. Lu, K.X. Wang, X. Zhang, and Y.C. Liu, Electrochim. Acta 176, 293 (2015).Google Scholar
  60. 60.
    R. Zhao, X. Li, B.L. Sun, H. Ji, and C. Wang, J. Colloid Interface Sci. 487, 297 (2017).Google Scholar
  61. 61.
    Q. Niu, J. Guo, B. Chen, J. Nie, X. Guo, and G. Ma, Carbon 114, 250 (2017).Google Scholar
  62. 62.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, and G.X. Liu, Chem. Eng. J. 222, 16 (2013).Google Scholar
  63. 63.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, and J. Xu, J. Mater. Chem. 22, 14438 (2012).Google Scholar
  64. 64.
    H. Shao, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, Y. Yang, J.X. Wang, and G.X. Liu, Sci. Rep. 5, 14052 (2015).Google Scholar
  65. 65.
    L.B. Fan, Q.L. Ma, J. Tian, D. Li, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, and G.X. Liu, RSC Adv. 7, 48702 (2017).Google Scholar
  66. 66.
    Z.J. Wang, Q.L. Ma, X.T. Dong, D. Li, X. Xi, W.S. Yu, J.X. Wang, and G.X. Liu, ACS Appl. Mater. Interfaces 8, 26226 (2016).Google Scholar
  67. 67.
    J.X. He, K. Qi, Y.M. Zhou, and S.Z. Cui, J. Appl. Polym. Sci. 131, 631 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin ProvinceChangchun University of Science and TechnologyChangchunChina

Personalised recommendations