Advertisement

Optoelectronic Properties of a Simple Metal-Free Organic Sensitizer with Different Spacer Groups: Quantum Chemical Assessments

  • Ammasi Arunkumar
  • Ponnusamy Munusamy AnbarasanEmail author
Article
  • 7 Downloads

Abstract

The optimized geometries, electronic structures, absorption spectra and non-linear optical (NLO) properties of five donor-π-spacer-acceptor (D-π-A)-based organic molecules, namely indolocarbazole-3,4-ethylenedioxythiophene, indolocarbazole-benzothiadiazole, indolocarbazole-furan, indolocarbazole-quinoxaline and indolocarbazole-benzoxadiazole (ICZS1–ICZS5), are analyzed using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The performance of three functionals, Becke’s three parameter Lee–Yang–Parr (B3LYP), Coulomb-attenuating method-B3LYP (CAM-B3LYP) and Grimme’s D2 dispersion model (WB97XD), were analyzed for indolo[3,2,1-jk]carbazole (IC-2). The computed results indicated that absorption spectra of WB97XD are closest to IC-2. As a result, the WB97XD functional was chosen for further studies of ICZS1–ICZS5 dyes. The designed molecules also show excellent performance in terms of smaller energy gap, chemical hardness, red-shifted longer wavelength, free energy change for electron injection, dye regeneration and NLO properties. The results reveal that different spacer derivatives resulted in better performance for the photovoltaic (PV) and NLO properties. In particular, ICZS2 and ICZS5 molecules produced excellent performance of the dye-sensitized solar cells (DSSCs) and NLO properties. Based on the theoretical results, the electronic structures and absorption spectra could be used for rational sensitizer design of organic dyes for optoelectronic applications.

Graphical Abstract

Keywords

D-π-A WB97XD TD-DFT NLO DSSCs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

11664_2018_6912_MOESM1_ESM.pdf (573 kb)
Supplementary material 1 (PDF 573 kb)

References

  1. 1.
    B. O’Regan and M. Gratzel, Nature 353, 737 (1991).CrossRefGoogle Scholar
  2. 2.
    Y. Wu and W. Zhu, Chem. Soc. Rev. 42, 2039 (2013).CrossRefGoogle Scholar
  3. 3.
    C.P. Lee, C.Y. Chou, C.Y. Chen, M.H. Yeh, L.Y. Lin, R. Vittal, C.G. Wu, and K.C. Ho, J. Power Sources 246, 1 (2014).CrossRefGoogle Scholar
  4. 4.
    S. Zhang, X. Yang, Y. Numata, and L. Han, Energy Environ. Sci. 6, 1443 (2013).CrossRefGoogle Scholar
  5. 5.
    M.A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt. 18, 144 (2010).CrossRefGoogle Scholar
  6. 6.
    M.K. Nazeeruddin, F.D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, J. Am. Chem. Soc. 127, 16835 (2005).CrossRefGoogle Scholar
  7. 7.
    C.-Y. Chen, M.K. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-le, J.D. Decoppet, J.H. Tsai, C. Grätzel, C.G. Wu, and S.M. Zakeeruddin, ACS Nano 3, 3103 (2009).CrossRefGoogle Scholar
  8. 8.
    T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N.A. Anderson, X. Ai, T.Q. Lian, and S. Yanagida, Chem. Mater. 16, 1806 (2004).CrossRefGoogle Scholar
  9. 9.
    Z. Yao, H. Wu, Y. Li, J.T. Wang, J. Zhang, M. Zhang, Y.C. Guo, and P. Wang, Energy Environ. Sci. 8, 3192 (2015).CrossRefGoogle Scholar
  10. 10.
    F. Wu, L.T.L. Lee, J. Liu, S. Zhao, T. Chen, M. Wang, and L. Zhu, Synth. Met. 205, 70 (2015).CrossRefGoogle Scholar
  11. 11.
    R. Sánchez-de-Armas, M.A. San, J. Miguel, J. Oviedo, and J.F. Sanz, Phys. Chem. Chem. Phys. 14, 225 (2012).CrossRefGoogle Scholar
  12. 12.
    Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube, and K. Hara, Chem. Mater. 20, 3993 (2008).CrossRefGoogle Scholar
  13. 13.
    Z. Wan, C. Jia, Y. Duan, L. Zhou, J. Zhang, Y. Lin, and Y. Shi, RSC Adv. 2, 4507 (2012).CrossRefGoogle Scholar
  14. 14.
    J. Sobus, J. Karolczak, D. Komar, J.A. Anta, and M. Ziółek, Dyes Pigm. 113, 692 (2015).CrossRefGoogle Scholar
  15. 15.
    Y. Hao, X. Yang, J. Cong, A. Hagfeldt, and L. Sun, Tetrahedron 68, 552 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Kar, J.K. Roy, and J. Leszczynski, NPJ Comput. Mater. 3, 22 (2017).CrossRefGoogle Scholar
  17. 17.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A. Heeger, Science 270, 1789 (1995).CrossRefGoogle Scholar
  18. 18.
    Y.J. Cheng, S.H. Yang, and C.S. Hsu, Chem. Rev. 109, 5868 (2009).CrossRefGoogle Scholar
  19. 19.
    T.-Y. Chu, J. Lu, S. Beaupré, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc. 133, 4250 (2011).CrossRefGoogle Scholar
  20. 20.
    D. Rocca, R. Gebauer, F. De Angelis, M.K. Nazeeruddin, and S. Baroni, Chem. Phys. Lett. 475, 49 (2009).CrossRefGoogle Scholar
  21. 21.
    A. Arunkumar and P.M. Anbarasan, J. Comput. Electron. 17, 1410 (2018).CrossRefGoogle Scholar
  22. 22.
    S. Ahmad, E. Guillen, L. Kavan, M. Grätzel, and M.K. Nazeeruddin, Energy Environ. Sci. 6, 3439 (2013).CrossRefGoogle Scholar
  23. 23.
    X. Ren, S. Jiang, M. Cha, G. Zhou, and Z.-S. Wang, Chem. Mater. 24, 3493 (2012).CrossRefGoogle Scholar
  24. 24.
    C. Luo, W. Bi, S. Deng, J. Zhang, S. Chen, B. Li, Q. Liu, H. Peng, and J. Chu, J. Phys. Chem. C 118, 14211 (2014).CrossRefGoogle Scholar
  25. 25.
    X.H. Zhang, Z.S. Wang, Y. Cui, N. Koumura, A. Furube, and K. Hara, J. Phys. Chem. C 113, 13409 (2009).CrossRefGoogle Scholar
  26. 26.
    S. Cai, G. Tian, X. Li, J. Su, and H.J. Tian, J. Mater. Chem. A 1, 11295 (2013).CrossRefGoogle Scholar
  27. 27.
    X. Zhang, M. Grätzel, and J. Hua, Front. Optoelectron. 9, 3 (2016).CrossRefGoogle Scholar
  28. 28.
    C.A. Guido, S. Knecht, J. Kongsted, and B. Mennucci, J. Chem. Theory Comput. 9, 2209 (2013).CrossRefGoogle Scholar
  29. 29.
    A. Arunkumar and P.M. Anbarasan, Struct. Chem. 29, 967 (2018).CrossRefGoogle Scholar
  30. 30.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven Jr., J.A. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09 (Wallingford: Gaussian Inc., 2009).Google Scholar
  31. 31.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  32. 32.
    C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  33. 33.
    F.D. Angelis, S. Fantacci, and A. Selloni, Nanotechnology 19, 424002 (2008).CrossRefGoogle Scholar
  34. 34.
    J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).CrossRefGoogle Scholar
  35. 35.
    T. Yanai, D.P. Tew, and N.C. Handy, Chem. Phys. Lett. 393, 51 (2004).CrossRefGoogle Scholar
  36. 36.
    Y.-S. Lin, G.-D. Li, S.-P. Mao, and J.-D. Chai, J. Chem. Theory Comput. 9, 263 (2012).CrossRefGoogle Scholar
  37. 37.
    N.M. O’Boyle, A.L. Tenderholt, and K.M. Langner, J. Comput. Chem. 29, 839 (2008).CrossRefGoogle Scholar
  38. 38.
    Y. Zhao and W.Z. Liang, Chem. Soc. Rev. 41, 1075 (2012).CrossRefGoogle Scholar
  39. 39.
    J.I. Nishida, T. Masuko, Y. Cui, K. Hara, H. Shibuya, M. Ihara, T. Hosoyama, R. Goto, S. Mori, and Y. Yamashita, J. Phys. Chem. C 114, 17920 (2010).CrossRefGoogle Scholar
  40. 40.
    R.G. Pearson, Proc. Natl. Acad. Sci. 83, 8440 (1986).CrossRefGoogle Scholar
  41. 41.
    M. Liang and J. Chen, Chem. Soc. Rev. 42, 3453 (2013).CrossRefGoogle Scholar
  42. 42.
    D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlon, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, and A.A. Sokol, Nat. Mater. 12, 798 (2013).CrossRefGoogle Scholar
  43. 43.
    Z.L. Zhang, L.Y. Zou, A.M. Ren, Y.F. Liu, J.K. Feng, and C.C. Sun, Dyes Pigm. 96, 349 (2013).CrossRefGoogle Scholar
  44. 44.
    P. Senthilkumar, C. Nithya, and P.M. Anbarasan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 15 (2014).CrossRefGoogle Scholar
  45. 45.
    A. Gadisa, M. Svensson, M.R. Andersson, and O. Inganas, Appl. Phys. Lett. 84, 1609 (2004).CrossRefGoogle Scholar
  46. 46.
    W. Sang-aroon, S. Saekow, and V. Amornkitbamrung, J. Photochem. Photobiol. A 236, 35 (2012).CrossRefGoogle Scholar
  47. 47.
    A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, and M. Bouachrine, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 132, 232 (2014).CrossRefGoogle Scholar
  48. 48.
    A. Arunkumar, M. Prakasam, and P.M. Anbarasan, Bull. Mater. Sci. 40, 1389 (2017).CrossRefGoogle Scholar
  49. 49.
    A. Islam, H. Sugihara, and H. Arakawa, J. Photochem. Photobiol. A 158, 131 (2003).CrossRefGoogle Scholar
  50. 50.
    M. Nakano, H. Fujita, M. Takahata, and K. Yamaguchi, J. Am. Chem. Soc. 124, 9648 (2002).CrossRefGoogle Scholar
  51. 51.
    V.M. Geskin, C. Lambert, and J.L. Bredas, J. Am. Chem. Soc. 125, 15651 (2003).CrossRefGoogle Scholar
  52. 52.
    M. Li, L. Kou, L. Diao, Q. Zhang, Z. Li, Q. Wu, W. Lu, D. Pan, and Z. Wei, J. Phys. Chem. C 119, 9782 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ammasi Arunkumar
    • 1
  • Ponnusamy Munusamy Anbarasan
    • 1
    Email author
  1. 1.Department of PhysicsPeriyar UniversitySalemIndia

Personalised recommendations