Advertisement

Hierarchical MoS2-Based Onion-Flower-like Nanostructures with and without Seedpods via Hydrothermal Route Exhibiting Low Turn-on Field Emission

  • Nilam Qureshi
  • Kashmira Harpale
  • Manish Shinde
  • Katia Vutova
  • Mahendra More
  • Taesung KimEmail author
  • Dinesh AmalnerkarEmail author
Article

Abstract

Herein, we report facile hydrothermal synthesis of hierarchical MoS2 -based nanomorphs (displaying onion-flower-like features) with the primary focus on field-emitter applications. The synthesized nanostructures were characterized physicochemically to understand their basic structural and morphological features. Interesting nanoscale morphological evolution of onion-flower-like MoS2—from plain nanoflowers to those containing seedpods—is observed with the change in hydrothermal reaction time from 9 h to 21 h. Peculiarly, MoS2 nanomorphs with only onion-flower-like morphology displayed lower turn-on field value of 3.7 V/μm as compared to 4.2 V/μm for the nanoflowers containing seedpod-like particles. This might be attributed to the possibility of an easy electron conduction path available for the petals in plain nanoflowers, which may be impeded by the seedpod-like particles in the latter case.

Graphical Abstract

Keywords

Molybdenum disulfide hierarchical nanostructures hydrothermal field emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Support from the Ministry of Electronics and Information Technology (MeitY), Government of India is acknowledged. Dr. Dinesh Amalnerkar gratefully accredits the Ministry of Science, ICT and Planning of Korean Government for financial support through the Brain-Pool Program of KOFST

References

  1. 1.
    X. Zhang, B. Liu, W. Yang, W. Jia, J. Li, C. Jiang, and X. Jiang, Nanoscale 8, 17573 (2016).CrossRefGoogle Scholar
  2. 2.
    J. Chao, S. Xing, J. Zhao, C. Qin, D. Duan, Y. Zhao, and Q. He, RSC Adv. 6, 55676 (2016).CrossRefGoogle Scholar
  3. 3.
    P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, and M.O. Coppens, Angew. Chem. Int. Ed. 55, 122 (2016).CrossRefGoogle Scholar
  4. 4.
    D. Lin, Y. Li, P. Zhang, W. Zhang, J. Ding, J. Li, G. Wei, and Z. Su, RSC Adv. 6, 52739 (2016).CrossRefGoogle Scholar
  5. 5.
    Y.H. Navale, S.T. Navale, N.S. Ramgir, F.J. Stadler, S.K. Gupta, D.K. Aswal, and V.B. Patil, Sens. Actuat. B: Chem. 251, 551 (2017).CrossRefGoogle Scholar
  6. 6.
    C. Peng, J. Guo, W. Yang, C. Shi, M. Liu, Y. Zheng, J. Xu, P. Chen, T. Huang, and Y. Yang, J. Alloys Comp. 654, 371 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Gu, J. Khan, Z. Chai, Y. Yuan, X. Yu, P. Liu, M. Wu, and W. Mai, J. Power Sources 303, 57 (2016).CrossRefGoogle Scholar
  8. 8.
    R. Krishnapriya, S. Praneetha, and A.V. Murugan, New J. Chem. 40, 5080 (2016).CrossRefGoogle Scholar
  9. 9.
    L. Li, Y. Cheah, Y. Ko, P. Teh, G. Wee, C. Wong, S. Peng, and M. Srinivasan, J. Mater. Chem. A.1, 10935 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Hu, W. Chen, J. Zhou, F. Yin, E. Uchaker, Q. Zhang, and G. Cao, J. Mater. Chem. A.2, 7862 (2014).CrossRefGoogle Scholar
  11. 11.
    R. Edla, A. Tonezzer, M. Orlandi, N. Patel, R. Fernandes, N. Bazzanella, K. Date, D.C. Kothari, and A. Miotello, Appl. Catal. B: Environ. 219, 401 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. Li, Z. Tang, J. Zhang, and Z. Zhang, Appl. Catal. A: Gen. 522, 90 (2016).CrossRefGoogle Scholar
  13. 13.
    X.C. Song, Y.F. Zheng, H.Y. Yin, J.N. Liu, and X.D. Ruan, New J. Chem. 40, 130 (2016).CrossRefGoogle Scholar
  14. 14.
    Y. Tang, M. Yang, H. Gao, J. Li, and G. Wang, Colloi. Surf. A: Physico-chem. Eng. Asp. 508, 184 (2016).CrossRefGoogle Scholar
  15. 15.
    A.H. Fu, K. Yu, H. Li, J. Li, B. Guo, Y. Tan, C. Song, and Z. Zhu, Dalton Trans. 44, 1664 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Umar, H. Algarni, S.H. Kim, and M.S. Al-Assiri, Ceram. Int. 42, 13215 (2016).CrossRefGoogle Scholar
  17. 17.
    M.D. Shinde, P.G. Chavan, G.G. Umarji, S.S. Arbuj, S.B. Rane, M.A. More, D.S. Joag, and D.P. Amalnerkar, J. Nanosci. Nanotech. 12, 3788 (2012).CrossRefGoogle Scholar
  18. 18.
    X. Kuang, T. Liu, D. Shi, W. Wang, M. Yang, S. Hussain, X. Peng, and F. Pan, Appl. Surf. Sci. 364, 371 (2016).CrossRefGoogle Scholar
  19. 19.
    X. Zeng, Z. Ding, C. Ma, L. Wu, J. Liu, L. Chen, D.G. Ivey, and W. Wei, ACS Appl. Mater. Interfaces 8, 18841 (2016).CrossRefGoogle Scholar
  20. 20.
    X. Gong, Y.Q. Gu, N. Li, H. Zhao, C.J. Jia, and Y. Du, Inorg. Chem. 55, 3992 (2016).CrossRefGoogle Scholar
  21. 21.
    N. Qureshi, S. Arbuj, M. Shinde, S. Rane, M. Kulkarni, D. Amalnerkar, and H. Lee, Nano Converg. 4, 25 (2017).CrossRefGoogle Scholar
  22. 22.
    S. Leidich, D. Buechele, R. Lauenstein, M. Kluenker, and C. Lind, J. Solid State Chem. 242, 175 (2016).CrossRefGoogle Scholar
  23. 23.
    J. Choi, J. Mun, M.C. Wang, A. Ashraf, S.W. Kang, and S.W. Nam, Nano Lett. 17, 1756 (2017).CrossRefGoogle Scholar
  24. 24.
    Y.B. Li, Y. Bando, and D. Golberg, Appl. Phys. Lett. 82, 1962 (2003).CrossRefGoogle Scholar
  25. 25.
    G. Deokar, N.S. Rajput, J. Li, F.L. Deepak, W.O. Yang, N. Reckinger, C. Bittencourt, J.F. Colomer, and M. Jouia Beilstein, J. Nanotech. 9, 1686 (2018).Google Scholar
  26. 26.
    D.K. Nandi, S. Sahoo, S. Sinha, S. Yeo, H. Kim, R.N. Bulakhe, J. Heo, J.J. Shim, and S.H. Kim, ACS Appl. Mater. Interfaces 9, 40252 (2017).CrossRefGoogle Scholar
  27. 27.
    G. Tang, J. Sun, W. Chen, H. Tang, Y. Wang, and C. Li, Micro Nano Lett. 8, 164 (2013).CrossRefGoogle Scholar
  28. 28.
    D. Wang, Z. Pan, Z. Wu, Z. Wang, and Z. Liu, J. Power Sources 264, 229 (2014).CrossRefGoogle Scholar
  29. 29.
    H.S. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, and C.N. Rao, Angew. Chem. Int. Ed. Engl. 49, 4059 (2010).CrossRefGoogle Scholar
  30. 30.
    R.V. Kashid, D.J. Late, S.S. Chou, Y.K. Huang, M. De, D.S. Joag, M.A. More, and V.P. Dravid, Small 9, 2730 (2013).CrossRefGoogle Scholar
  31. 31.
    Y.H. Tan, K. Yu, J.Z. Li, H. Fu, and Z.Q. Zhu, J. Appl. Phys. 116, 064305 (2014).CrossRefGoogle Scholar
  32. 32.
    J. Li, K. Yu, Y. Tan, H. Fu, Q. Zhang, W. Cong, C. Song, H. Yin, and Z. Zhu, Dalton Trans. 43, 13136 (2014).CrossRefGoogle Scholar
  33. 33.
    S.R. Bansode, K. Harpale, R.T. Khare, P.S. Walke, and M.A. More, Mater. Res. Exp. 3, 115023 (2016).CrossRefGoogle Scholar
  34. 34.
    D.J. Late, P.A. Shaikh, R. Khare, R.V. Kashid, M. Chaudhary, M.A. More, and S.B. Ogale, ACS Appl. Mater. Interfaces 6, 15881 (2014).CrossRefGoogle Scholar
  35. 35.
    F. Jamali-Sheini, R. Yousefi, D.S. Joag, and M.A. More, Vacuum 10, 1233 (2014).Google Scholar
  36. 36.
    P.S. Gaur, S. Sahoo, F. Mendoza, A.M. Rivera, M. Kumar, S.P. Dash, G. Morell, and R.S. Katiyar, Appl. Phys. Lett. 108, 043103 (2016).CrossRefGoogle Scholar
  37. 37.
    H. Li, H. Wu, S. Yuan, and H. Qian, Sci. Rep. 6, 21171 (2016).CrossRefGoogle Scholar
  38. 38.
    R.V. Kashid, P.D. Joag, M. Thripuranthaka, C.S. Rout, D.J. Late, and M.A. More, Nanomater. Nanotech. 5, 10 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Nilam Qureshi
    • 1
  • Kashmira Harpale
    • 2
  • Manish Shinde
    • 3
  • Katia Vutova
    • 4
  • Mahendra More
    • 2
  • Taesung Kim
    • 1
    Email author
  • Dinesh Amalnerkar
    • 5
    Email author
  1. 1.Nano Particles Technology Laboratory, School of Mechanical EngineeringSungkyunkwan UniversitySuwonSouth Korea
  2. 2.Department of Physics, Center for Advanced Studies in Material Science and Condensed Matter PhysicsSavitribaiPhule Pune UniversityPuneIndia
  3. 3.Centre for Materials for Electronics Technology (C-MET)PuneIndia
  4. 4.Institute of ElectronicsBulgarian Academy of SciencesSofiaBulgaria
  5. 5.Institute of Nano Science and TechnologyHanyang UniversitySeoulSouth Korea

Personalised recommendations