Advertisement

Formation and Characterization of Cd2S3 Polycrystalline Films onto Glass and Lanthanum Substrates

  • A. F. QasrawiEmail author
  • Olfat A. Omareya
Article
  • 7 Downloads

Abstract

In this article, the structural, optical and dielectric properties of the rarely investigated Cd2S3 thin films are reported. Particularly, Cd2S3 thin films prepared by the thermal evaporation technique onto glass, and 150-nm-thick lanthanum transparent substrate studied by means of energy-dispersive structural analysis have shown that the Cd2S3 thin films are of polycrystalline nature. The hexagonal unit cell parameters, which slightly differ from that of CdS, increased upon replacement of glass with lanthanum. All the other structural parameters including the grain size, strain and defect density are accordingly affected. While the optical band gap increased when La replaces glass, the high-frequency dielectric constant decreased. On the other hand, the Drude–Lorentz modeling of the dielectric spectra has shown that the La/Cd2S3 thin films are promising materials for production of thin film transistors as they exhibit drift mobility values of ∼ 13.3 cm2/Vs. The response of the glass/Cd2S3 and La/Cd2S3 interfaces to the incident electromagnetic light is associated with hole-plasmon interactions that are limited by plasmon frequency values in the range of 0.4–8.1 GHz. Such property makes this material attractive as microwave band pass/reject filters.

Keywords

Cd2S3 formation optical plasmon dielectric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge with gratitude the Deanship of Scientific Research (DSR) at the Arab American University for their support.

References

  1. 1.
    B. Jin, P. Huang, Q. Zhang, X. Zhou, X. Zhang, L. Li, S. Jianwei, H. Li, and T. Zhai, Adv. Funct. Mater. 28, 1800181 (2018).CrossRefGoogle Scholar
  2. 2.
    P.M.P. Salomé, J. Keller, T. Törndahl, J.P. Teixeira, N. Nicoara, R.R. Andrade, D.G. Stroppa, J.C. González, M. Edoff, J.P. Leitão, and S. Sadewasser, Mat. Sol. C. 159, 272 (2017).CrossRefGoogle Scholar
  3. 3.
    N.M. Khusayfan, A.F. Qasrawi, and H.K. Khanfar, Mater. Res. Express 5, 026303 (2018).CrossRefGoogle Scholar
  4. 4.
    H. Agarwal, P. Kushwaha, J.P. Duarte, Y.K. Lin, A.B. Sachid, M.Y. Kao, H.L. Chang, S. Salahuddin, and C. Hu, IEEE T. Electron Dev. 65, 2033 (2018).CrossRefGoogle Scholar
  5. 5.
    S. Lambright, E. Butaeva, N. Razgoniaeva, T. Hopkins, B. Smith, D. Perera, J. Corbin, E. Khon, R. Thomas, P. Moroz, and A. Mereshchenko, ACS Nano 8, 352 (2013).CrossRefGoogle Scholar
  6. 6.
    L. Ma, X. Ai, and X. Wu, J. Alloy. Compd. 691, 399 (2017).CrossRefGoogle Scholar
  7. 7.
    R.M. Abdelhameed and I.M. El Radaf, Mater. Res. Express 5, 066402 (2018).CrossRefGoogle Scholar
  8. 8.
    M.V. Glushkov, A.A. Mamedov, A.M. Prokhorov, Z.A. Pukhliï, and I.A. Shcherbakov, JETP Lett. 31, 104 (1980).Google Scholar
  9. 9.
    R.G. Solanki, P. Rajaram, and P.K. Bajpai, Indian J. Phys. 92, 595 (2018).CrossRefGoogle Scholar
  10. 10.
    E.A. Axtell III, J.H. Liao, Z. Pikramenou, Y. Park, and M.G. Kanatzidis, J. Am. Chem. Soc. 115, 12191 (1993).CrossRefGoogle Scholar
  11. 11.
    S.V. Borisov, S.A. Magarill, N.V. Podberezskaya, and N.V. Pervukhina, J. Struct. Chem. 38, 759 (1997).CrossRefGoogle Scholar
  12. 12.
    J. Yang, J.R. Hyde, J.W. Wilson, K. Mallik, P.J. Sazio, P. O’Brien, M.A. Malik, M. Afzaal, Ch.Q. Nguyen, M.W. George, S.M. Howdle, and D.C. Smith, Adv. Mater. 21, 4115 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Yang, H. Chen, and X. Bao, J. Cryst. Growth 252, 251 (2003).CrossRefGoogle Scholar
  14. 14.
    T.Y. Abed, A.F. Qasrawi, and S.E. Al Garni, J. Alloy. Compd. 731, 1022 (2018).CrossRefGoogle Scholar
  15. 15.
    A. Omar, A.F. Qasrawi, and N.M. Gasanly, J. Alloy. Compd. 724, 98 (2017).CrossRefGoogle Scholar
  16. 16.
    A. Saranya, T. Devasena, H. Sivaram, and R. Jayavel. Mater. Science Semicond. Process. (2018).  https://doi.org/10.1016/j.mssp.2018.03.028.
  17. 17.
    N.M. Khusayfan and H.K. Khanfar, Optik 158, 1154 (2018).CrossRefGoogle Scholar
  18. 18.
    S. Jindal, K. Kaur, N.K. Verma, and P. Sharma, J. Mater. Sci.-Mater. Electron. 29, 86 (2018).CrossRefGoogle Scholar
  19. 19.
    P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, and J. Viegas, J. Alloy. Compd. 708, 804 (2017).CrossRefGoogle Scholar
  20. 20.
    C.V. Thompson, Annu. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
  21. 21.
    A.F. Qasrawi, J. Alloy. Compd. 769, 78 (2018).CrossRefGoogle Scholar
  22. 22.
    J. Lai, J. Zhang, Y. Mao, L. Lin, J. Min, X. Liang, J. Huang, K. Tang, and L. Wang, J. Electron. Mater. 4, 1 (2018).Google Scholar
  23. 23.
    H.L. Skriver and N.M. Rosengaard, Phys. Rev. B 46, 7157 (1992).CrossRefGoogle Scholar
  24. 24.
    M. Dresselhaus, Optical Properties of Solids (New York: American Scientific Publishers, 1980).Google Scholar
  25. 25.
    M. Iovu, M. Enachescu, I. Culeac, V. Verlan, S. Robu, D. Bojin, I. Nistor, and I. Cojocaru, PROC SPIE 9258(2015) 92580H.International Society for Optics and Photonics.Google Scholar
  26. 26.
    C. Ramki and R.E. Vizhi, Mater. Chem. Phys. 197, 70 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsArab American UniversityJeninPalestine
  2. 2.Group of Physics, Faculty of EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations