Analysis of Thermoelectric Generators with General Material Property Variations

  • X. S. Cao
  • J. S. YangEmail author
Progress and Challenges for Emerging Integrated Energy Modules
Part of the following topical collections:
  1. Progress and Challenges for Emerging Integrated Energy Modules
  2. Progress and Challenges for Emerging Integrated Energy Modules


A theoretical analysis is performed on thermoelectric generators of functionally graded materials with arbitrary material property variations described by power series. The temperature field is obtained by the power series method of ordinary differential equations. The thermoelectric energy conversion efficiency is calculated and maximized as a function of the current density. Systematic numerical studies are performed for exponential, linear, and trigonometric material property variations. Our theoretical model with general material property variation allows us to explore for higher efficiency more flexibly. The maximum efficiency found is about 25% which is substantially higher than what is in the literature on the same topic.


Thermoelectric generator functionally graded material energy conversion efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the support by the National Natural Science Foundation of China (No. 11572244) and the open State Key Laboratories of Transducer Technology (No. SKT1506).


  1. 1.
    H. Hashim, J.J. Bomphrey, and G. Min, Renewable Energy 87, 458 (2016).CrossRefGoogle Scholar
  2. 2.
    K. Yazawa, G.L. Solbrekken, and A. Bar-Cohen IEEE Trans. Adv. Packag. 28, 231 (2005).CrossRefGoogle Scholar
  3. 3.
    D.M. Rowe, Appl. Energy 40, 241 (1991).CrossRefGoogle Scholar
  4. 4.
    J.H. Yang and T. Caillat, MRS Bull. 31, 224 (2006).CrossRefGoogle Scholar
  5. 5.
    N.R. Kristiansen and H.K. Nielsen, J. Electron. Mater. 39, 1746 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Chen, Y. Sasaki, and R.O. Suzuki, Mater. Trans. 52, 1549 (2011).CrossRefGoogle Scholar
  7. 7.
    X.L. Gou, H. Xiao, and S.W. Su, Appl. Energy 87, 3131 (2010).CrossRefGoogle Scholar
  8. 8.
    C.-T. Hsu, G.-Y. Huang, H.-S. Chu, B. Yu, and D.-J. Yao, Appl. Energy 88, 1291 (2011).CrossRefGoogle Scholar
  9. 9.
    F.J. Lesage and N. Page-Potvin, Energy Convers. Manage. 66, 98 (2013).CrossRefGoogle Scholar
  10. 10.
    S.H. Yu, Q. Du, H. Diao, G.Q. Shu, and K. Jiao, Appl. Energy 138, 276 (2010).CrossRefGoogle Scholar
  11. 11.
    Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).CrossRefGoogle Scholar
  12. 12.
    J.R. Szczech, J.M. Higgins, and S. Jin, J. Mater. Chem. 21, 4037 (2011).CrossRefGoogle Scholar
  13. 13.
    Z. Aabdin, N. Peranio, O. Eibl, W. Töllner, K. Nielsch, D. Bessas, R.P. Hermann, M. Winkler, J. König, H. Böttner, V. Pacheco, J. Schmidt, A. Hashibon, and C. Elsässer, J. Electron. Mater. 41, 1792 (2012).CrossRefGoogle Scholar
  14. 14.
    H. Kim, M.-K. Han, C.-H. Yo, W. Lee, and S.-J. Kim, J. Electron. Mater. 41, 3411 (2012).CrossRefGoogle Scholar
  15. 15.
    H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).CrossRefGoogle Scholar
  16. 16.
    M. Koizumi, Composites Part B - Engineering 28, 1 (1997).CrossRefGoogle Scholar
  17. 17.
    V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Mater. Sci. 37, 2893 (2002).CrossRefGoogle Scholar
  18. 18.
    E. Muller, C. Drasar, J. Schilz, and W.A. Kaysser, Mater. Sci. Eng., A 362, 17 (2003).CrossRefGoogle Scholar
  19. 19.
    L. Anatychuk, L.N. Vikhor, L.T. Strutynska, and I.S. Termena, J. Electron. Mater. 40, 957 (2011).CrossRefGoogle Scholar
  20. 20.
    D.M. Rowe, Thermoelectrics Handbook (Boca Raton: CRC Press, 2016).Google Scholar
  21. 21.
    G.D. Mahan, J. Appl. Phys. 70, 4551 (1991).CrossRefGoogle Scholar
  22. 22.
    Z.-H. Jin, T.T. Wallace, R.J. Lad, and J. Su, J. Electron. Mater. 43, 308 (2014).CrossRefGoogle Scholar
  23. 23.
    Z.-H. Jin and T.T. Wallace, J. Electron. Mater. 44, 1444 (2015).CrossRefGoogle Scholar
  24. 24.
    T.T. Wallace, Z.-H. Jin, and J. Su, J. Electron. Mater. 45, 2142 (2016).CrossRefGoogle Scholar
  25. 25.
    X.S. Cao, F. Jin, and I. Jeon, NDT&E Int. 44, 84 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Civil EngineeringXi’an University of TechnologyXi’anChina
  2. 2.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations