Advertisement

Metal–Insulator–Metal Diodes: A Potential High Frequency Rectifier for Rectenna Application

  • Shilpi ShriwastavaEmail author
  • C. C. Tripathi
Article
  • 20 Downloads

Abstract

Metal–insulator–metal (MIM) diodes are among the most promising candidates for applications in the high frequency regime. Owing to the tunneling dominant current conduction mechanism, they facilitate femtosecond fast switching time, which has drawn great research attention for many potential high-speed applications and especially as a rectifier in rectenna based energy harvesting. Since its advent in the early 1960s, a lot of development has occurred in various aspects of design, fabrication and characterization of MIM diodes for rectenna applications. In this work, a detailed study on MIM diodes is conducted emphasizing the advancements in design and fabrication of MIM diodes and future challenges from the point of view of their application in rectennas. In addition, the fabrication and characterization of a graphene (Gr) based Al/AlOx/Gr MIM diode are also presented herein, exhibiting highly asymmetric current–voltage characteristics with large current density and a good degree of nonlinearity. An asymmetricity exceeding 2500 and the corresponding current density up to ∼ 1 A/cm2 were obtained at a voltage bias of 1 V. The peak nonlinearity was ∼ 3.8, whereas the zero bias resistance was as low as ∼ 600 Ω. These performance metrics are highly desirable for rectification operation and hence the as-fabricated Al/AlOx/Gr MIM diode holds great promise for its potential use as a rectifying element in rectennas.

Keywords

MIM diode terahertz energy harvesting tunneling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The first author, Shilpi Shriwastava, gratefully acknowledges University Grants Commission (UGC), India (4062/(NET-JUNE 2013)) for providing financial assistance through JRF and SRF.

References

  1. 1.
    J.G. Simmons, J. Phys. D Appl. Phys. 4, 5 (1971).Google Scholar
  2. 2.
    J.C. Fisher and I. Giaever, J. Appl. Phys. 32, 2 (1961).  https://doi.org/10.1063/1.1735973.Google Scholar
  3. 3.
    S. Keith, Champlin Gadi Eisenstein 26, 1 (1978).  https://doi.org/10.1109/TMTT.1978.1129302.Google Scholar
  4. 4.
    Rainer Waser and Masakazu Aono, Nat. Mater. 6, 11 (2007).  https://doi.org/10.1038/nmat2023.Google Scholar
  5. 5.
    M. Heiblum, Solid State Electron. 24, 4 (1981).  https://doi.org/10.1016/0038-1101(81)90029-0.Google Scholar
  6. 6.
    S.K. Masalmeh, H.K.E. Stadermann, and J. Korving, Physica B 218, 1 (1996).  https://doi.org/10.1016/0921-4526(95)00558-7.Google Scholar
  7. 7.
    S. Krishnan, S. Bhansali, E. Stefanakos, and D.Y. Goswami, Procedia Chem. 1, 1 (2009).  https://doi.org/10.1016/j.proche.2009.07.102.Google Scholar
  8. 8.
    T.K. Gustafson, R.V. Schmidt, and J.R. Perucca, Appl. Phys. Lett. 24, 12 (1974).  https://doi.org/10.1063/1.1655078.Google Scholar
  9. 9.
    R.L. Baily, J. Eng. Power 94, 2 (1972).  https://doi.org/10.1115/1.3445660.Google Scholar
  10. 10.
    W.C. Brown, IEEE Trans. Microwave Theory Technol. 32, 9 (1984).Google Scholar
  11. 11.
    D.K. Kotter, S.D. Novack, W.D. Slafer, and P. Pinhero. In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences (American Society of Mechanical Engineers, 2008), pp. 409–415.  https://doi.org/10.1115/es2008-54016.
  12. 12.
    E. Donchev, J.S. Pang, P.M. Gammon, A. Centeno, F. Xie, P.K. Petrov, J.D. Breeze, M.P. Ryan, D.J. Riley, and N.M. Alford, MRS Energy Sustain. (2014).  https://doi.org/10.1557/mre.2014.6.Google Scholar
  13. 13.
    N.M. Miskovsky, P.H. Cutler, A. Mayer, B.L. Weiss, B. Willis, T.E. Sullivan, and P.B. Lerner, J. Nanotechnol. (2012).  https://doi.org/10.1155/2012/512379.Google Scholar
  14. 14.
    S. Shriwastava, K. Bhatt, S. Sharma, S. Kumar, and C.C. Tripathi, in International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 83–88 (2017).  https://doi.org/10.1109/icicct.2017.7975164.
  15. 15.
    L. Mescia and A. Massaro, Adv. Mater. Sci. Eng., 2014, Article ID 252879 (2014).  https://doi.org/10.1155/2014/252879.
  16. 16.
    Simon Hemour and Ke Wu, Proc. IEEE 102, 11 (2014).  https://doi.org/10.1109/JPROC.2014.2358691.Google Scholar
  17. 17.
    R.H. Fowler and L. Nordheim, Proc. R. Soc. Lond. Ser. A 119, 781 (1928).  https://doi.org/10.1098/rspa.1928.0091.Google Scholar
  18. 18.
    B.J. Eliasson, MetalInsulatorMetal Diodes for Solar Energy Conversion. Ph.D. Thesis, University of Colorado at Boulder, Boulder (2001).Google Scholar
  19. 19.
    J.G. Simmons, J. Appl. Phys. 34, 2581 (1963).  https://doi.org/10.1063/1.1729774.Google Scholar
  20. 20.
    A. Sanchez, C.F. Davis Jr, K.C. Liu, and A. Javan, J. Appl. Phys. 49, 10 (1978).  https://doi.org/10.1063/1.324426.Google Scholar
  21. 21.
    J.W. Dees, Microwave J. 9, 48 (1966).Google Scholar
  22. 22.
    B. Twu and S.E. Schwarz, Appl. Phys. Lett. 25, 10 (1974).  https://doi.org/10.1063/1.1655325.Google Scholar
  23. 23.
    R.E. Drullinger, K.M. Evenson, D.A. Jennings, F.R. Petersen, J.C. Bergquist, and L. Burkins, Appl. Phys. Lett. 42, 2 (1983).  https://doi.org/10.1063/1.93852.Google Scholar
  24. 24.
    S.I. Green, J. Appl. Phys. 42, 3 (1971).  https://doi.org/10.1063/1.1660161.Google Scholar
  25. 25.
    H.D. Riccius, Appl. Phys. Lett. 27, 232 (1975).  https://doi.org/10.1063/1.88440.Google Scholar
  26. 26.
    J.G. Small, G.M. Elchinger, A. Javan, A. Sanchez, F.J. Bachner, and D.L. Smythe, Appl. Phys. Lett. 24, 6 (1974).  https://doi.org/10.1063/1.1655181.Google Scholar
  27. 27.
    S.W.M. Heiblum, J. Whinnery, and T. Gustafson, IEEE J. Quantum Electron. 14, 3 (1978).  https://doi.org/10.1109/JQE.1978.1069765.Google Scholar
  28. 28.
    A. Sommerfeld and H. Bethe, Handbuch der Physik, Vol. 24/2, ed. H. Geiger and K. Scheel (Berlin: Julius Springer, 1933), p. 450.Google Scholar
  29. 29.
    R. Holm, J. Appl. Phys. 22, 569 (1951).  https://doi.org/10.1063/1.1700008.Google Scholar
  30. 30.
    J.G. Simmons, J. Appl. Phys. 34, 6 (1963).  https://doi.org/10.1063/1.1702682.Google Scholar
  31. 31.
    G. Chapline Michael and X. Wang Shan, J. Appl. Phys. 101, 8 (2007).  https://doi.org/10.1063/1.2714784.Google Scholar
  32. 32.
    Sachit Grover and Garret Moddel, Solid State Electron. 67, 1 (2012).  https://doi.org/10.1016/j.sse.2011.09.004.Google Scholar
  33. 33.
    I.E. Hashem, N.H. Rafat, and E.A. Soliman, IEEE J. Quantum Electron. 49, 1 (2013).  https://doi.org/10.1109/JQE.2012.2228166.Google Scholar
  34. 34.
    C.S. Lent and D.J. Kirkner, J. Appl. Phys. 67, 10 (1990).  https://doi.org/10.1063/1.345156.Google Scholar
  35. 35.
    S. Datta, Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press, 2005).Google Scholar
  36. 36.
    M.R. Abdel-Rahman, M. Syaryadhi, and N. Debbar, Electron. Lett. 49, 5 (2013).  https://doi.org/10.1049/el.2012.4222.Google Scholar
  37. 37.
    E.W. Cowell III, S.W. Muir, D.A. Keszler, and J.F. Wager, J. Appl. Phys. 114, 21 (2013).  https://doi.org/10.1063/1.4839695.Google Scholar
  38. 38.
    M.F. Zia, M.R. Abdel-Rahman, N.F. Al-Khalli, and N.A. Debbar, Acta Phys. Pol., A 127, 4 (2015).  https://doi.org/10.12693/APhysPolA.127.1289.Google Scholar
  39. 39.
    J.G. Simmons, J. Appl. Phys. 35, 8 (1964).Google Scholar
  40. 40.
    T. O’Regan, M. Chin, C. Tan, and A. Birdwell, ARL-TN -0464 (2011).Google Scholar
  41. 41.
    M.L. Chin, P. Periasamy, T.P. O’Regan, M. Amani, C. Tan, R.P. O’Hayre, J.J. Berry, R.M. Osgood III, P.A. Parilla, D.S. Ginley, and M. Dubey, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 31, 5 (2013).  https://doi.org/10.1116/1.4818313.Google Scholar
  42. 42.
    F.-C. Chiu, Adv. Mater. Sci. Eng. (2014).  https://doi.org/10.1155/2014/578168.Google Scholar
  43. 43.
    S.K. Kim, S.W. Lee, J.H. Han, B. Lee, S. Han, and C.S. Hwang, Adv. Func. Mater. 20, 18 (2010).  https://doi.org/10.1002/adfm.201000599.Google Scholar
  44. 44.
    S. Shriwastava, K. Bhatt, S.K. Sandeep, and C.C. Tripathi, in 2017 2nd International Conference for Convergence in Technology (I2CT), India, pp. 738–741 (2017).  https://doi.org/10.1109/i2ct.2017.8226226.
  45. 45.
    K. Choi, Novel Tunneling Diodes for a High Performance Infrared Rectenna. University of Maryland, College Park, Ph.D. Thesis (2011).Google Scholar
  46. 46.
    J.H. Shin, J. Im, J.-W. Choi, H.S. Kim, J.I. Sohn, S.N. Cha, and J.E. Jang, Carbon 102, 172 (2016).Google Scholar
  47. 47.
    A.J. Bergren, K.D. Harris, F. Deng, and R.L. McCreery, J. Phys.: Condens. Matter (2008).  https://doi.org/10.1088/0953-8984/20/37/374117.Google Scholar
  48. 48.
    R. Kumar, H. Yan, R.L. McCreery, and A.J. Bergren, Phys. Chem. Chem. Phys. 13, 14318 (2011).Google Scholar
  49. 49.
    E. Donchev, Thin Film Diode Structures for Advanced Energy Applications, PhD Thesis, University of South Florida (2015).Google Scholar
  50. 50.
    P. Dudek, R. Schmidt, M. Lukosius, G. Lupina, Ch Wenger, A. Abrutis, M. Albert, K. Xu, and A. Devi, Thin Solid Films 519, 17 (2011).  https://doi.org/10.1016/j.tsf.2010.12.195.Google Scholar
  51. 51.
    R. Urcuyo, D.L. Duong, H.Y. Jeong, M. Burghard, and K. Kern, Adv. Electron. Mater. 2, 9 (2016).  https://doi.org/10.1002/aelm.201600223.Google Scholar
  52. 52.
    M. Shaygan, Z. Wang, M.S. Elsayed, M. Otto, G. Iannaccone, A.H. Ghareeb, G. Fiori, R. Negra, and D. Neumaier, Nanoscale (2017).  https://doi.org/10.1039/c7nr02793a.Google Scholar
  53. 53.
    S. Hwan Lee, M. Sup Choi, J. Lee, C. Ho Ra, X. Liu, E. Hwang, J. Hee Choi, J. Zhong, W. Chen, and W. Jong Yoo, Appl. Phys. Lett. 104, 053103 (2014).  https://doi.org/10.1063/1.4863840.Google Scholar
  54. 54.
    P. Periasamy, J.J. Berry, A.A. Dameron, J.D. Bergeson, D.S. Ginley, R.P. O’Hayre, and P.A. Parilla, Adv. Mater. 23, 3080 (2011).  https://doi.org/10.1002/adma.201101115.Google Scholar
  55. 55.
    K. Gloos, P.J. Koppinen, and J.P. Pekola, J. Phys.: Condens. Matter 15, 1733 (2003).Google Scholar
  56. 56.
    J. Kadlec and K.H. Gundlach, Solid State Commun. 16, 5 (1975).  https://doi.org/10.1016/0038-1098(75)90438-X.Google Scholar
  57. 57.
    D.A. Neamen, Semiconductor Physics and Devices: Basic Principles. Richard D. Irwin Inc. ISBN 0-256-0B405-X, 1992, Homewood IL 60430 (1992).Google Scholar
  58. 58.
    F. Aydinoglu, M. Alhazmi, B. Cui, O.M. Ramahi, M. Irannejad, A. Brzezinski, and M. Yavuz, Austin J Nanomed. Nanotechnol. 1, 1 (2013).Google Scholar
  59. 59.
    B.J. Eliasson and G. Moddel, Metal-Oxide Electron Tunneling Device for Solar Energy Conversion. U.S. Patent 6,534,784 (2003).Google Scholar
  60. 60.
    B. Eliasson and G. Moddel, High Speed Electron Tunneling Device and Applications. US Patent 6,756,649 (2004).Google Scholar
  61. 61.
    P. Maraghechi, A. Foroughi-Abari, K. Cadien, and A.Y. Elezzabi, Appl. Phys. Lett. 100, 113503 (2012).Google Scholar
  62. 62.
    S. Grover, Diodes for Optical Rectenna. Ph.D. Thesis, University of Colorado, Boulder (2011).Google Scholar
  63. 63.
    B. Hegyi, A. Csurgay, and W. Porod, J. Comput. Electron. 6, 1 (2007).  https://doi.org/10.1007/s10825-006-0083-9.Google Scholar
  64. 64.
    O.A. Ajayi, DC and RF Characterization of High Frequency ALD Enhanced Nanostructured MetalInsulator Metal Diodes, Ph.D. thesis, University of South Florida (2014).Google Scholar
  65. 65.
    A.D. Weerakkody, N. Sedghi, I.Z. Mitrovic, H. van Zalinge, I. Nemr-Noureddine, S. Hall, J.S. Wrench, P.R. Chalker, L.J. Phillips, R. Treharne, and K. Durose, Microelectron. Eng. (2015).  https://doi.org/10.1016/j.mee.2015.04.110.Google Scholar
  66. 66.
    S.B. Herner, A.D. Weerakkody, A. Belkadi, and G. Moddel, Appl. Phys. Lett. 110, 22 (2017).  https://doi.org/10.1063/1.4984278.Google Scholar
  67. 67.
    I. Nemr Noureddine, N. Sedghi, I.Z. Mitrovic, and S. Hall, J. Vac. Sci. Technol., B 35, 1 (2017).  https://doi.org/10.1116/1.4974219.Google Scholar
  68. 68.
    N. Alimardani and J.F. Conley Jr., in Proceedings of SPIE, vol. 8824 (2013).  https://doi.org/10.1117/12.2024750.
  69. 69.
    N. Alimardani and J.F. Conley Jr, Appl. Phys. Lett. 105, 8 (2014).  https://doi.org/10.1063/1.4893735.Google Scholar
  70. 70.
    P. Maraghechi, A. Foroughi-Abari, K. Cadien, and A.Y. Elezzabi, Appl. Phys. Lett. 99, 25 (2011).  https://doi.org/10.1063/1.3671071.Google Scholar
  71. 71.
    D. Sekar, T. Kumar, P. Rabkin, and X. Costa, US Patent App. 13/787, 505 (2013).Google Scholar
  72. 72.
    I.Z. Mitrovic, A.D. Weerakkody, N. Sedghi, S. Hall, J.F. Ralph, J.S. Wrench, P.R. Chalker, Z. Luo, and S. Beeby, ECS Trans. 72, 2 (2016).  https://doi.org/10.1149/07202.0287ecst.Google Scholar
  73. 73.
    W. Guo, Evaluation of e-Beam SiO 2 for MIM Application. M.S. Thesis, University of Alberta (2010).Google Scholar
  74. 74.
    S. Krishnan, E. Stefanakos, and S. Bhansali, Thin Solid Films 516, 8 (2008).  https://doi.org/10.1016/j.tsf.2007.08.067.Google Scholar
  75. 75.
    P. Esfandiari, G. Bernstein, P. Fay, W. Porod, B. Rakos, A. Zarandy, B. Berland, L. Boloni, G. Boreman, B. Lail, and B. Monacelli, Infrared Technology and Applications, vol. XXXI (SPIE, Orlando, 2005).Google Scholar
  76. 76.
    N. Alimardani, S.W. King, B.L. French, C. Tan, B.P. Lampert, and J.F. Conley Jr, J. Appl. Phys. 116, 024508 (2014).Google Scholar
  77. 77.
    A. Singh, R. Ratnadurai, R. Kumar, S. Krishnan, Y. Emirov, and S. Bhansali, Appl. Surf. Sci. 334, 1 (2015).  https://doi.org/10.1016/japsusc201409160.Google Scholar
  78. 78.
    K. Choi, G. Ryu, F. Yesilkoy, A. Chryssis, N. Goldsman, M. Dagenais, and M. Peckerar, J. Vac. Sci. Technol., B 28, 6 (2010).  https://doi.org/10.1116/1.3501350.Google Scholar
  79. 79.
    P.C. Hobbs, R.B. Laibowitz, and F.R. Libsch, Appl. Opt. 44, 32 (2005).  https://doi.org/10.1364/ao.44.006813.Google Scholar
  80. 80.
    P. Periasamy, H.L. Guthrey, A.I. Abdulagatov, P.F. Ndione, J.J. Berry, D.S. Ginley, S.M. George, P.A. Parilla, and R.P. O’Hayre, Adv. Mater. 25, 9 (2013).  https://doi.org/10.1002/adma.201203075.Google Scholar
  81. 81.
    K. Mistry, M. Yavuz, and K.P. Musselman, J. Appl. Phys. 121, 18 (2017).  https://doi.org/10.1063/1.4983256.Google Scholar
  82. 82.
    M. Bareiß, D. Kalblein, C. Jirauschek, A. Exner, I. Pavlichenko, B. Lotsch, U. Zschieschang, H. Klauk, G. Scarpa, B. Fabel, W. Porod, and P. Lugli, Appl. Phys. Lett. 101, 8 (2012).  https://doi.org/10.1063/1.4745651.Google Scholar
  83. 83.
    Z. Thacker and P.J. Pinhero, IEEE Trans. Terahertz Sci. Technol. 6, 414 (2016).  https://doi.org/10.1109/tthz.2016.2541684.Google Scholar
  84. 84.
    Y. Rawal, S. Ganguly, and S.M. Baghini, Act. Passive Electron. Compon. (2012).  https://doi.org/10.1155/2012/694105.Google Scholar
  85. 85.
    N. Alimardani, E.W. Cowell III, J.F. Wager, and J.F. Conley Jr, J. Vac. Sci. Technol. A: Vac. Surf. Films 30, 1 (2012).  https://doi.org/10.1116/1.3658380.Google Scholar
  86. 86.
    I.-T. Wu, N. Kislov, and J. Wang, Nanosci. Nanotechnol. Lett. 2, 144 (2010).Google Scholar
  87. 87.
    I. Wilke, W. Herrmann, and F.K. Kneubühl, Appl. Phys. B 58, 2 (1994).  https://doi.org/10.1007/BF01082341.Google Scholar
  88. 88.
    C. Fumeaux, W. Herrmann, F.K. Kneubuhl, and H. Rothuizen, Infrared Phys. Technol. 39, 3 (1998).  https://doi.org/10.1016/S1350-4495(98)00004-8.Google Scholar
  89. 89.
    J.A. Bean, B. Tiwari, G.H. Bernstein, P. Fay, and W. Porod, J. Vac. Sci. Technol., B 27, 1 (2009).  https://doi.org/10.1116/1.3039684.Google Scholar
  90. 90.
    S. Krishnan, H. La Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, Sens. Actuators, A 142, 1 (2008).  https://doi.org/10.1016/j.sna.2007.04.021.Google Scholar
  91. 91.
    M.N. Gadalla, M. Abdel-Rahman, and A. Shamim, Sci. Rep. 4, 4270 (2014).  https://doi.org/10.1038/srep04270.Google Scholar
  92. 92.
    M.R. Abdel-Rahman, F.J. Gonzalez, and G.D. Boreman, Electron. Lett. 40, 2 (2004).  https://doi.org/10.1049/el:20040105.Google Scholar
  93. 93.
    F. Yesilkoy, IR Detection and Energy Harvesting Using Antenna Coupled MIM Tunnel Diodes. Ph.D. thesis, University of Maryland College Park (2012).Google Scholar
  94. 94.
    C. Zhuang, L. Wang, Z. Dai, and D. Yang, ECS Solid State Lett. 4, 5 (2015).  https://doi.org/10.1149/2.0021505ssl.Google Scholar
  95. 95.
    A. Taurino, I. Farella, A. Cola, M. Lomascolo, F. Quaranta, and M. Catalano, J. Vac. Sci. Technol., B 31, 4 (2013).  https://doi.org/10.1116/1.4811824.Google Scholar
  96. 96.
    M. Bareiß, F. Ante, D. Kalblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E.M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, ACS Nano 6, 3 (2012).  https://doi.org/10.1021/nn3004058.Google Scholar
  97. 97.
    S. Zhang, L. Wang, X. Chen, D. Li, L. Chen, and D. Yang, ECS Solid State Lett. 2, 1 (2013).  https://doi.org/10.1149/2.001301ssl.Google Scholar
  98. 98.
    R. Ratnadurai, S. Krishnan, E. Stefanakos, D.Y. Goswami, and S. Bhansali, in AIP Conference Proceedings, vol. 1313, p. 1 (2010).  https://doi.org/10.1063/1.3530561.
  99. 99.
    A.A. Khan, G. Jayaswal, F.A. Gahaffar, and A. Shamim, Microelectron. Eng. (2017).  https://doi.org/10.1016/j.mee.2017.07.003.Google Scholar
  100. 100.
    E.W. Cowell III, J. Wager, B. Gibbons, and D. Keszler, US Patent 8,436,337 (2013).Google Scholar
  101. 101.
    S. Krishnan, Y. Emirov, S. Bhansali, E. Stefanakos, and Y. Goswami, Thin Solid Films 518, 12 (2010).  https://doi.org/10.1016/j.tsf.2009.10.021.Google Scholar
  102. 102.
    B. Tiwari, J.A. Bean, G. Szakmány, G.H. Bernstein, P. Fay, and W. Porod, J. Vac. Sci. Technol., B 27, 5 (2009).  https://doi.org/10.1116/1.3204979.Google Scholar
  103. 103.
    N. Debbar, M. Syaryadhi, and M. Abdel-Rahman, Eur. Phys. J. Appl. Phys. 68, 3 (2014).  https://doi.org/10.1051/epjap/2014130489.Google Scholar
  104. 104.
    J. Shirakashi, K. Matsumoto, N. Miura, and M. Konagai, Jpn. J. Appl. Phys. 36, 8B (1997).Google Scholar
  105. 105.
    E.G. Arsoy, M. Inac, A. Shafique, M. Ozcan, and Y. Gurbuz, Infrared Technol. Appl. XLII, 9819 (2016).  https://doi.org/10.1117/12.2224748.Google Scholar
  106. 106.
    N. Alimardani, E.W. Cowell III, J.F. Wager, and J.F. Conley, Jr. 221st ECS Meeting (2012).Google Scholar
  107. 107.
    F.M. Alhazmi, F. Aydinoglu, B. Cui, O.M. Ramahi, M. Irannejad, A. Brzezinski, and M. Yavuz, Austin J Nanomed. Nanotechnol. 2, 2 (2014).Google Scholar
  108. 108.
    N. Alimardani, J.M. McGlone, J.F. Wager, and J.F. Conley Jr, J. Vac. Sci. Technol., A 32, 01A122 (2013).  https://doi.org/10.1116/1.4843555.Google Scholar
  109. 109.
    I. Azad, M.K. Ram, D.Y. Goswami, and E. Stefanakos, Langmuir (2016).  https://doi.org/10.1021/acs.langmuir.6b02182.Google Scholar
  110. 110.
    S. Krishnan, Thin Film MetalInsulatorMetal Tunnel Junctions for Millimeter Wave Detection. Ph.D. Thesis, University of South Florida (2004).Google Scholar
  111. 111.
    S. Sharma, Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices. Ph.D. Thesis, University of South Florida, (2015).Google Scholar
  112. 112.
    M. Celestin, S. Krishnan, D.Y. Goswami, E. Stefanakos, and S. Bhansali, Procedia Eng. 1, 1 (2010).  https://doi.org/10.1016/j.proeng.2010.09.291.Google Scholar
  113. 113.
    D. Etor, L.E. Dodd, D. Wood, and C. Balocco, Appl. Phys. Lett. 109, 19 (2016).  https://doi.org/10.1063/1.4967190.Google Scholar
  114. 114.
    S. Shriwastava, K. Bhatt, S. Sharma, S. Kumar, and C.C. Tripathi, Int. J. Nanoparticles 10, 207 (2018).  https://doi.org/10.1504/ijnp.2018.094046.Google Scholar
  115. 115.
    P. Periasamy, M.S. Bradley, P.A. Parilla, J.J. Berry, D.S. Ginley, R.P. O’Hayre, and C.E. Packard, J. Mater. Res. 28, 14 (2013).  https://doi.org/10.1557/jmr.2013.171.Google Scholar
  116. 116.
    A.A. Khan, Investigation of MIM Diodes for RF Applications, M.S. Thesis, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (2015).Google Scholar
  117. 117.
    B. Berland, Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, (NREL, Golden, CO), p. 16 (2011).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication Engineering, University Institute of Engineering and TechnologyKurukshetra UniversityKurukshetraIndia

Personalised recommendations