Advertisement

Thermal Stability and Mechanical Properties of Thermoelectric Tetrahedrite Cu12Sb4S13

  • Ji-Hee Pi
  • Sung-Gyu Kwak
  • Sung-Yoon Kim
  • Go-Eun Lee
  • Il-Ho KimEmail author
Topical Collection: International Conference on Thermoelectrics 2018
  • 12 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Abstract

Tetrahedrite Cu12Sb4S13 was prepared by mechanical alloying and hot pressing, and its thermal stability and mechanical properties were examined. The phase transformation (decomposition), chemical composition, elemental redistribution, microstructure, hardness, and three-point bending strength were studied under various aging conditions (atmospheric, temperature, and time). Endothermic peaks were observed at temperatures from 845 K to 892 K and were found to be related to tetrahedrite decompositions. The Vickers hardness of the pristine specimen was 2.2 GPa on average, and did not significantly change with the aging conditions. The bending strength of the pristine specimen was 26.7 MPa on average, and it remarkably decreased to 6.2 MPa after aging at 723 K for 100 h in air. However, it was 21.4 MPa after aging at 723 K for 100 h in vacuum.

Keywords

Tetrahedrite thermoelectric thermal stability mechanical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by a grant from the Industrial Core Technology Development Program (10083640) funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

References

  1. 1.
    R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).CrossRefGoogle Scholar
  2. 2.
    B. Mishra and A. Mookherjee, Econ. Geol. 86, 1529 (1991).CrossRefGoogle Scholar
  3. 3.
    E. Makovicky and B.J. Skinner, Can. Mineral. 16, 611 (1978).Google Scholar
  4. 4.
    B.J. Wuensch, Z. Kristall. 119, 437 (1964).CrossRefGoogle Scholar
  5. 5.
    A. Pfitzner, M. Evain, and V. Petricek, Acta Crystallogr. 53, 337 (1997).CrossRefGoogle Scholar
  6. 6.
    Y. Kosaka, K. Suekuni, K. Hashikuni, Y. Bouyrie, M. Ohta, and T. Takabatake, Phys. Chem. Chem. Phys. 19, 8874 (2017).CrossRefGoogle Scholar
  7. 7.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Heo, R. Ravichandran, C.F. Reidy, J. Tate, J.F. Wager, and D.A. Keszler, Adv. Energy Mater. 5, 1401506 (2015).CrossRefGoogle Scholar
  9. 9.
    K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).CrossRefGoogle Scholar
  10. 10.
    J. Heo, G. Laurita, S. Muir, M.A. Subramanian, and D.A. Keszler, Chem. Mater. 26, 2047 (2014).CrossRefGoogle Scholar
  11. 11.
    X. Fan, E.D. Case, X. Lu, and D.T. Morelli, J. Mater. Sci. 48, 7540 (2013).CrossRefGoogle Scholar
  12. 12.
    R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobolab, and B. Lenoira, J. Mater. Chem. C 3, 10476 (2015).CrossRefGoogle Scholar
  14. 14.
    J.H. Park, J.H. Jeong, and D.J. Choi, Phys. Status Solidi A 213, 1526 (2016).CrossRefGoogle Scholar
  15. 15.
    C. Peng, L.C. Wu, F. Rao, Z.T. Song, X.L. Zhou, M. Zhu, B. Liu, D.N. Yao, S.L. Feng, P.X. Yang, and J.H. Chu, Scr. Mater. 65, 327 (2011).CrossRefGoogle Scholar
  16. 16.
    Y. Hu, X. Zhu, H. Zou, L. Zheng, S. Song, and Z. Song, J. Alloys Compd. 696, 150 (2017).CrossRefGoogle Scholar
  17. 17.
    D. Shishin and S.A. Decterov, CALPHAD 38, 59 (2012).CrossRefGoogle Scholar
  18. 18.
    B. Hallstedt, D. Risold, and L.J. Gauckler, J. Phase Equilib. 15, 483 (1994).CrossRefGoogle Scholar
  19. 19.
    B. Hallstedt and L.J. Gauckler, CALPHAD 27, 177 (2003).CrossRefGoogle Scholar
  20. 20.
    A.P. Gonçalves, E.B. Lopes, M.F. Montemor, J. Monnier, and B. Lenoir, J. Electron. Mater. 47, 2880 (2018).Google Scholar
  21. 21.
    T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).CrossRefGoogle Scholar
  22. 22.
    K. Chen, Synthesis and Thermoelectric Properties of Cu-Sb-S Compounds, Ph. D. Thesis, p. 36, Queen Mary University of London, UK (2016).Google Scholar
  23. 23.
    M.S. Asl, A.S. Namini, A. Motallebzadeh, and M. Azadbeh, J. Mater. Chem. Phys. 203, 266 (2018).CrossRefGoogle Scholar
  24. 24.
    J. Seo, D. Cho, K. Park, and C. Lee, Mater. Res. Bull. 35, 2157 (2000).CrossRefGoogle Scholar
  25. 25.
    J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng., B 117, 334 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ji-Hee Pi
    • 1
  • Sung-Gyu Kwak
    • 1
  • Sung-Yoon Kim
    • 1
  • Go-Eun Lee
    • 1
  • Il-Ho Kim
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations