Advertisement

Combined Numerical and Experimental Investigation on the Optimum Coolant Flow Rate for Automotive Thermoelectric Generators

  • Xingxing Lei
  • Yiping Wang
  • Yadong Deng
  • Chuqi Su
  • Xun Liu
  • Guangyao Chen
Topical Collection: International Conference on Thermoelectrics 2018
  • 9 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Abstract

In a water-cooled thermoelectric generator (TEG) system, there is an energy-consuming circulating water pump. In order to reduce pump energy consumption caused by backpressure and increase the output power of the entire system, combining numerical simulation and experimentation is adopted to explore the suitable coolant flow rate. Due to the limitations of the experimental conditions, numerical simulation is used to compute the temperature distribution and flow field inside the TEG. Base on the numerical results and the empirical formula, the circulating pump energy consumption is calculated. The maximum power output of the thermoelectric module (TEM) at the corresponding temperature difference is obtained by experiment. Finally, the maximum net output power of the module is revealed and the relationship between the coolant flow rate and average temperature of the hot end of the TEMs is proposed, which can serve as a theoretical basis for cooling water flow rate management of the TEG system.

Keywords

Thermoelectric generator arithmetic mean experiment bench optimum coolant flow rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gabriel-Buenaventura and B. Azzopardi, Renew. Sustain. Energy. Rev. 41, 955 (2015).CrossRefGoogle Scholar
  2. 2.
    S. Li, Y.P. Wang, T. Wang, X. Yang, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 46, 1 (2016).Google Scholar
  3. 3.
    C. Liu, Y.D. Deng, X.Y. Wang, X. Liu, Y.P. Wang, and C.Q. Su, Appl. Therm. Eng. 108, 916 (2016).CrossRefGoogle Scholar
  4. 4.
    I.C. Silva Jr., F.R.D. Nascimento, E.J.D. Oliveira, A.L.M. Marcato, and L.W.D. Oliveira, Int. J. Elec. Power 44, 134 (2013).CrossRefGoogle Scholar
  5. 5.
    X.H. Yuan, W.R. Bai, Y.D. Deng, C.Q. Su, X. Liu, C.H. Liu, and Y.P. Wang, J. Renew. Sustain. Energy 8, 816 (2016).Google Scholar
  6. 6.
    Y.Y. Hsiao, W.C. Chang, and S.L. Chen, Energy 35, 1447 (2010).CrossRefGoogle Scholar
  7. 7.
    Y.C. Wang, C.S. Dai, and S.X. Wang, Appl. Energy 112, 1171 (2013).CrossRefGoogle Scholar
  8. 8.
    X.L. Gou, H. Xiao, and S.W. Yang, Appl. Energy 87, 3131 (2010).CrossRefGoogle Scholar
  9. 9.
    C. Amaral, C. Brandão, V.S. Éric, and F.J. Lesage, Appl. Therm. Eng. 65, 94 (2014).CrossRefGoogle Scholar
  10. 10.
    S.C. Tzeng, T.M. Jen, and Y.L. Lin, Int. Commun. Heat Mass Transfer 52, 97 (2014).CrossRefGoogle Scholar
  11. 11.
    Y.P. Wang, S. Li, X. Yang, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 45, 1 (2015).Google Scholar
  12. 12.
    C.Q. Su, M. Xu, W.S. Wang, Y.D. Deng, X. Liu, and Z.B. Tang, J. Electron. Mater. 44, 1 (2015).CrossRefGoogle Scholar
  13. 13.
    J.H. Meng, X.D. Wang, and W.H. Chen, Energy Convers. Manag. 120, 71 (2016).CrossRefGoogle Scholar
  14. 14.
    C.Q. Su, D.C. Zhu, Y.D. Deng, Y.P. Wang, and X. Liu, J. Electron. Mater. 46, 1 (2016).Google Scholar
  15. 15.
    M. Hatami, D.D. Ganji, and M. Gorji-Bandpy, Energy. Convers. Manag. 97, 26 (2015).CrossRefGoogle Scholar
  16. 16.
    Z.B. Tang, Y.D. Deng, C.Q. Su, and X.H. Yuan, J. Electron. Mater. 44, 1554 (2015).CrossRefGoogle Scholar
  17. 17.
    Y.P. Wang, S. Li, Y.F. Zhang, X. Yang, Y.D. Deng, and C.Q. Su, Energy. Convers. Manag. 126, 266 (2016).CrossRefGoogle Scholar
  18. 18.
    Y.D. Deng, S.J. Zheng, C.Q. Su, X.H. Yuan, C.G. Yu, and Y.P. Wang, J. Electron. Mater. 45, 1740 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Xingxing Lei
    • 1
    • 2
  • Yiping Wang
    • 1
    • 2
  • Yadong Deng
    • 1
    • 2
  • Chuqi Su
    • 1
    • 2
  • Xun Liu
    • 1
    • 2
  • Guangyao Chen
    • 3
  1. 1.Hubei Key Laboratory of Advanced Technology for Automotive ComponentsWuhan University of TechnologyWuhanChina
  2. 2.Hubei Collaborative Innovation Center for Automotive Components TechnologyWuhan University of TechnologyWuhanChina
  3. 3.Office of Ningbo Jiangbei District Cicheng Town People’s GovernmentNingboChina

Personalised recommendations