Skip to main content
Log in

Combined Numerical and Experimental Investigation on the Optimum Coolant Flow Rate for Automotive Thermoelectric Generators

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In a water-cooled thermoelectric generator (TEG) system, there is an energy-consuming circulating water pump. In order to reduce pump energy consumption caused by backpressure and increase the output power of the entire system, combining numerical simulation and experimentation is adopted to explore the suitable coolant flow rate. Due to the limitations of the experimental conditions, numerical simulation is used to compute the temperature distribution and flow field inside the TEG. Base on the numerical results and the empirical formula, the circulating pump energy consumption is calculated. The maximum power output of the thermoelectric module (TEM) at the corresponding temperature difference is obtained by experiment. Finally, the maximum net output power of the module is revealed and the relationship between the coolant flow rate and average temperature of the hot end of the TEMs is proposed, which can serve as a theoretical basis for cooling water flow rate management of the TEG system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gabriel-Buenaventura and B. Azzopardi, Renew. Sustain. Energy. Rev. 41, 955 (2015).

    Article  Google Scholar 

  2. S. Li, Y.P. Wang, T. Wang, X. Yang, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 46, 1 (2016).

    Google Scholar 

  3. C. Liu, Y.D. Deng, X.Y. Wang, X. Liu, Y.P. Wang, and C.Q. Su, Appl. Therm. Eng. 108, 916 (2016).

    Article  Google Scholar 

  4. I.C. Silva Jr., F.R.D. Nascimento, E.J.D. Oliveira, A.L.M. Marcato, and L.W.D. Oliveira, Int. J. Elec. Power 44, 134 (2013).

    Article  Google Scholar 

  5. X.H. Yuan, W.R. Bai, Y.D. Deng, C.Q. Su, X. Liu, C.H. Liu, and Y.P. Wang, J. Renew. Sustain. Energy 8, 816 (2016).

    Google Scholar 

  6. Y.Y. Hsiao, W.C. Chang, and S.L. Chen, Energy 35, 1447 (2010).

    Article  Google Scholar 

  7. Y.C. Wang, C.S. Dai, and S.X. Wang, Appl. Energy 112, 1171 (2013).

    Article  Google Scholar 

  8. X.L. Gou, H. Xiao, and S.W. Yang, Appl. Energy 87, 3131 (2010).

    Article  Google Scholar 

  9. C. Amaral, C. Brandão, V.S. Éric, and F.J. Lesage, Appl. Therm. Eng. 65, 94 (2014).

    Article  Google Scholar 

  10. S.C. Tzeng, T.M. Jen, and Y.L. Lin, Int. Commun. Heat Mass Transfer 52, 97 (2014).

    Article  Google Scholar 

  11. Y.P. Wang, S. Li, X. Yang, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 45, 1 (2015).

    Google Scholar 

  12. C.Q. Su, M. Xu, W.S. Wang, Y.D. Deng, X. Liu, and Z.B. Tang, J. Electron. Mater. 44, 1 (2015).

    Article  Google Scholar 

  13. J.H. Meng, X.D. Wang, and W.H. Chen, Energy Convers. Manag. 120, 71 (2016).

    Article  Google Scholar 

  14. C.Q. Su, D.C. Zhu, Y.D. Deng, Y.P. Wang, and X. Liu, J. Electron. Mater. 46, 1 (2016).

    Google Scholar 

  15. M. Hatami, D.D. Ganji, and M. Gorji-Bandpy, Energy. Convers. Manag. 97, 26 (2015).

    Article  Google Scholar 

  16. Z.B. Tang, Y.D. Deng, C.Q. Su, and X.H. Yuan, J. Electron. Mater. 44, 1554 (2015).

    Article  Google Scholar 

  17. Y.P. Wang, S. Li, Y.F. Zhang, X. Yang, Y.D. Deng, and C.Q. Su, Energy. Convers. Manag. 126, 266 (2016).

    Article  Google Scholar 

  18. Y.D. Deng, S.J. Zheng, C.Q. Su, X.H. Yuan, C.G. Yu, and Y.P. Wang, J. Electron. Mater. 45, 1740 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Wang, Y., Deng, Y. et al. Combined Numerical and Experimental Investigation on the Optimum Coolant Flow Rate for Automotive Thermoelectric Generators. J. Electron. Mater. 48, 1981–1990 (2019). https://doi.org/10.1007/s11664-018-06879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06879-9

Keywords

Navigation