Enhancement of Electrical Conduction and Phonon Scattering in Ga2O3(ZnO)9-In2O3(ZnO)9 Compounds by Modification of Interfaces at the Nanoscale

  • Diana T. Alvarez-Ruiz
  • Feridoon Azough
  • David Hernandez-Maldonado
  • Demie M. Kepaptsoglou
  • Quentin M. Ramasse
  • Peter Svec
  • Peter SvecSr.
  • Robert FreerEmail author
Topical Collection: International Conference on Thermoelectrics 2018
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018


The Ga2O3(ZnO)9 and In2O3(ZnO)9 homologous phases have attracted attention as thermoelectric (TE) oxides due to their layered structures. Ga2O3(ZnO)9 exhibits low thermal conductivity, while In2O3(ZnO)9 possesses higher electrical conductivity. The TE properties of the solid solution of Ga2O3(ZnO)9-In2O3(ZnO)9 were explored and correlated with changes in the crystal structure. High-quality (1−x)Ga2O3(ZnO)9-(ZnO)9 (x = 0.0 to 1.0) ceramics were prepared by the solid-state route using B2O3 and Nd2O3 as additives. The crystal structures were analysed by x-ray diffraction, high-resolution transmission electron microscopy and atomic resolution scanning transmission electron microscopy–high-angle annular dark field imaging–energy dispersive x-ray spectroscopy (STEM–HAADF–EDS) techniques. A layered superstructure with compositional modulations was observed in all samples in the (1−x)Ga2O3(ZnO)9-xIn2O3(ZnO)9 system. All the ceramics exhibited nanoscale structural features identified as Ga- and In-rich inversion boundaries (IBs). Substitution of 20 mol.% In (x = 0.2) in the Ga2O3(ZnO)9 compounds generated basal and pyramidal indium IBs typically found in the In2O3(ZnO)m system. The (Ga0.8In0.2)2O3(ZnO)9 compound does not exhibit the structural features of the \( Cmcm \) Ga2O3(ZnO)9 compound, which is formed by a stacking of Ga-rich IBs along the pyramidal plane of the wurtzite ZnO, but features that resemble the crystal structure exhibited by the \( R\overline{3} m \) In2O3(ZnO)m with basal and pyramidal indium IBs. The structural changes led to improved TE performance. For example, (Ga0.8In0.2)2O3(ZnO)9 showed a low thermal conductivity of 2 W/m K and a high power factor of 150 μW/m K2 giving a figure of merit (ZT) of 0.07 at 900 K. This is the highest ZT for Ga2O3(ZnO)9-based homologous compounds and is comparable with the highest ZT reported for In2O3(ZnO)9 homologous compounds.


ZnO thermoelectric homologous compounds interfaces inversion boundaries twin boundaries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the EPSRC for the provision of funding for this work (EP/H043462, EP/I036230/1, EP/L014068/1, EP/L017695/1 are acknowledged by RF). SuperSTEM is the EPSRC National Facility for Advanced Electron Microscopy, supported by EPSRC. All research data supporting this publication are directly available within the publication.


  1. 1.
    H.J. Goldsmid and R.W. Douglas, Br. J. Appl. Phys. 11, 386 (1954).CrossRefGoogle Scholar
  2. 2.
    V.E. Altenkirch, Phys. Zeitschr. 16, 10 (1909).Google Scholar
  3. 3.
    V.E. Altenkirch, Physik. Zeitschr. 12, 920 (1911).Google Scholar
  4. 4.
    S.R. Yeandel, M. Molinari, and S.C. Parker, RSC Adv. 6, 115 (2016).CrossRefGoogle Scholar
  5. 5.
    Y. Michiue, T. Mori, A. Prytuliak, Y. Matsushita, M. Tanaka, and N. Kimizukac, RSC Adv. 1, 1788 (2011).CrossRefGoogle Scholar
  6. 6.
    E. Guilmeau, P. Díaz-Chao, O.I. Lebedev, A. Rečnik, M.C. Schäfer, F. Delorme, F. Giovannelli, M. Košir, and S. Bernik, Inorg. Chem. 56, 1 (2017).CrossRefGoogle Scholar
  7. 7.
    H. Ohta, W.S. Seo, and K. Koumoto, J. Am. Ceram. Soc. 79, 8 (1996).CrossRefGoogle Scholar
  8. 8.
    D.T. Alvarez-Ruiz, F. Azough, D. Hernandez-Maldonado, D.M. Kepaptsoglou, Q.M. Ramasse, S.J. Day, P. Svec, P. Svec Sr, and R. Freer, J. Alloys Compd. 762, 892 (2018).CrossRefGoogle Scholar
  9. 9.
    S. Isobe, T. Tani, Y. Masuda, W.S. Seo, and K. Koumoto, Jpn. J. Appl. Phys. 2R, 41 (2002).Google Scholar
  10. 10.
    C. Li, Y. Bando, M. Nakamura, M. Onoda, and N. Kimizuka, J. Solid State Chem. 139, 2 (1998).CrossRefGoogle Scholar
  11. 11.
    Y. Michiue and N. Kimizuka, Acta Crystallogr Sec B 66, 2 (2010).Google Scholar
  12. 12.
    D.T. Alvarez-Ruiz, Doctoral Thesis, University of Manchester (2018).Google Scholar
  13. 13.
    C. Li, Y. Bando, M. Nakamura, and N. Kimizuka, J Electron Microsc. 46, 2 (1997).CrossRefGoogle Scholar
  14. 14.
    C. Li, Y. Bando, M. Nakamura, M. Onoda, and N. Kimizuka, J. Solid State Chem. 139, 2 (1998).CrossRefGoogle Scholar
  15. 15.
    Y. Yan, L.F. Juarez-Da Silva, S.H. Wei, and M. Al-Jassim, Appl. Phys. Lett. 90, 26 (2007).Google Scholar
  16. 16.
    Y. Yan, A. Walsh, L.F. Juarez-Da Silva, S.H. Wei, and M. Al-Jassim, in 34th IEEE Photovoltaic Specialists Conference (2009), pp. 000172–000174.Google Scholar
  17. 17.
    A. Yoshinari, K. Ishida, K.I. Murai, and T. Moriga, Mater. Res. Bull. 44, 2 (2009).CrossRefGoogle Scholar
  18. 18.
    T. Moriga, D.R. Kammler, T.O. Mason, G.B. Palmer, and K.R. Poeppelmeier, J. Am. Ceram. Soc. 82, 10 (1999).Google Scholar
  19. 19.
    M. Nakamura, N. Kimizuka, and T. Mori, J. Solid State Chem. 93, 2 (1991).CrossRefGoogle Scholar
  20. 20.
    T. Moriga, K. Ishida, K. Yamamoto, A. Yoshinari, and K.I. Murai, Mater. Res. Innov. 13, 3 (2009).CrossRefGoogle Scholar
  21. 21.
    I. Keller, W. Assenmacher, G. Schnakenburg, W. Mader, and Z. Anorg, Allg. Chem. 635, 12 (2009).Google Scholar
  22. 22.
    A. Coelho, Topas Academic V5 (Australia: Brisbane, 2014).Google Scholar
  23. 23.
    R. Taylor, J Phys E. 13, 11 (1980).CrossRefGoogle Scholar
  24. 24.
    S.W. Yoon, J.H. Seo, T.Y. Seong, T.H. Yu, Y.H. You, K.B. Lee, H. Kwon, and J.P. Ahn, J Cryst Growth 12, 3 (2012).CrossRefGoogle Scholar
  25. 25.
    P.J. Cannard and R.J.D. Tilley, J. Solid State Chem. 73, 2 (1988).CrossRefGoogle Scholar
  26. 26.
    J.B. Labegorre, O.I. Lebedev, C. Bourge, A. Recnik, M. Kosir, S. Bernik, A. Maignan, T. Le Mercier, L. Pautrot-d’Alencon, and E. Guilmeau, ACS Appl. Mater. Interfaces 10, 6415 (2018).CrossRefGoogle Scholar
  27. 27.
    J. Barf, T. Walther, and W. Mader, Int Sci. 12, 2 (2004).Google Scholar
  28. 28.
    Y. Liu, W. Xu, D.-B. Liu, M. Yu, Y.-H. Lin, and C.-W. Nan, PCCP 17, 11229 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of MaterialsUniversity of ManchesterManchesterUK
  2. 2.SuperSTEM LaboratoryDaresburyUK
  3. 3.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations