Influence of Surface Modification and Dispersive Additives on Dielectric and Electrical Properties of BiFeO3/Poly(methyl methacrylate) Composite Films

  • Srikanta Moharana
  • Manoj Kumar Chopkar
  • Ram Naresh Mahaling


Surface modification plays an important role to enhance the dielectric constant and minimize the dielectric loss. In this study, poly(methyl methacrylate) (PMMA) composites filled with 2-aminoethanesulfonic acid-modified bismuth ferrite (BiFeO3; BFO) have been prepared via solution casting technique. The surface morphology of the composites provides a better homogeneous dispersion of the particles in the polymer matrix and increases interface compatibility between modified BFO and PMMA matrix. The experimental results show that the composites have high dielectric constant (≈ 147), alternating current (AC) conductivity (1 × 10−5) and relatively low loss (< 1) at 100 Hz. The percolation phenomenon is well observed in the composite having less than 30 wt.% of BFO particles. Further, the composites produce passivation layers on the surface of modified BFO particles which might improve the morphology and promote the space charges, interface effects and dielectric properties. Our strategy is to provide a simple and efficient approach to fabricate high-performance dielectric composites for energy storage applications.

Graphical Abstract


Poly(methyl methacrylate) dielectric properties morphology surface treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the financial support obtained from the DST-FIST and UGC-DRS grant for the development of research work in the School of Chemistry, Sambalpur University, and project grant of DST Government of Odisha, India. One of the authors (SM) thanks UGC, New Delhi, for financial support through a BSR Research fellowship.


  1. 1.
    L.Y. Xie, X.Y. Huang, C. Wu, and P.K. Jiang, J. Mater. Chem. 21, 5897 (2011).CrossRefGoogle Scholar
  2. 2.
    P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.J. Pan, S.R. Marder, J.Y. Li, J.P. Calame, and J.W. Perry, ACS Nano 3, 2581 (2009).CrossRefGoogle Scholar
  3. 3.
    Z.M. Dang, Y.H. Lin, and C.W. Nan, Adv. Mater. 15, 1625 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Yuan, Z. Dang, S. Yao, J. Zha, T. Zhou, S. Li, and J. Bai, J. Mater. Chem. 20, 2441 (2010).CrossRefGoogle Scholar
  5. 5.
    K.H. Lee, J. Kao, S.S. Parizi, G. Caruntu, and T. Xu, Nanoscale 6, 3526 (2014).CrossRefGoogle Scholar
  6. 6.
    G. Sarasqueta, K.R. Choudhury, D.Y. Kim, and F. So, Appl. Phys. Lett. 93, 123305 (2008).CrossRefGoogle Scholar
  7. 7.
    Z. Li, L.A. Fredin, P. Tewari, S.A. DiBenedetto, M.T. Lanagan, M.A. Ratner, and T.J. Marks, Chem. Mater. 22, 5154 (2010).CrossRefGoogle Scholar
  8. 8.
    H.X. Tang, Y.R. Lin, C. Andrews, and H.A. Sodano, Nanotechnology 22, 015702 (2011).CrossRefGoogle Scholar
  9. 9.
    Q. Zhang, J. Zhai, B. Shen, H. Zhang, and X. Yao, Mater. Res. Bull. 48, 973 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, and Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2000).CrossRefGoogle Scholar
  11. 11.
    M. Arbatti, X.B. Shan, and Z.Y. Cheng, Adv. Mater. 19, 1369 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Wu, M.R. Lin, S.G. Lu, L. Zhu, and Q.M. Zhang, Appl. Phys. Lett. 99, 132901 (2011).CrossRefGoogle Scholar
  13. 13.
    M. Rahimabady, S.T. Chen, K. Yao, F.E.H. Tay, and L. Lu, Appl. Phys. Lett. 99, 142901 (2011).CrossRefGoogle Scholar
  14. 14.
    K. Yu, H. Wang, Y. Zhou, Y. Bai, and Y. Niu, J. Appl. Phys. 113, 034105 (2013).CrossRefGoogle Scholar
  15. 15.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).CrossRefGoogle Scholar
  16. 16.
    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, and J.F. Scott, Phys. Rev. B 77, 014110 (2008).CrossRefGoogle Scholar
  17. 17.
    Y.H. Lin, Q. Jiang, Y. Wang, C.W. Nan, L. Chen, and J. Yu, Appl. Phys. Lett. 90, 172507 (2007).CrossRefGoogle Scholar
  18. 18.
    J.Y. Li, L. Zhang, and S. Ducharme, Appl. Phys. Lett. 90, 132901 (2007).CrossRefGoogle Scholar
  19. 19.
    R.N. Das, J.M. Lauffer, and V.R. Markovich, J. Mater. Chem. 18, 537 (2008).CrossRefGoogle Scholar
  20. 20.
    W. Yan, Z.J. Han, B.T. Phung, and K. Ostrikov, ACS Appl. Mater. Interfaces 4, 2637 (2012).CrossRefGoogle Scholar
  21. 21.
    Y. Deng, Y.J. Zhang, Y. Xiang, G.S. Wang, and H.B. Xu, J. Mater. Chem. 19, 2058 (2009).CrossRefGoogle Scholar
  22. 22.
    S.A. Paniagua, Y. Kim, K. Henry, R. Kumar, J.W. Perry, and S.R. Marder, ACS Appl. Mater. Interfaces 6, 3477 (2014).CrossRefGoogle Scholar
  23. 23.
    M.M. Kumar, V.R. Palkar, K. Srinivas, and S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).CrossRefGoogle Scholar
  24. 24.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004).CrossRefGoogle Scholar
  25. 25.
    E. Mostafavi and A. Ataie, Mater. Sci. Poland 34, 148 (2016).CrossRefGoogle Scholar
  26. 26.
    B. Sannakki and Anita, Phys. Proc. 49, 15 (2013).CrossRefGoogle Scholar
  27. 27.
    P. Thomas, R.S.E. Ravindran, and K.B.R. Varma, J. Therm. Anal. Calorim. 115, 1311 (2014).CrossRefGoogle Scholar
  28. 28.
    Q. Yong, F. Nian, B. Liao, L. Huang, L. Wang, and H. Pang, RSC Adv. 5, 107413 (2015).CrossRefGoogle Scholar
  29. 29.
    D.A. Kotadia and S.S. Soni, J. Mol. Catal. A: Chem. 44, 353 (2012).Google Scholar
  30. 30.
    D. Lee, M.G. Kim, S. Ryu, H.M. Jang, and S.G. Lee, Appl. Phys. Lett. 86, 222903 (2005).CrossRefGoogle Scholar
  31. 31.
    I. Karimzadeh, M. Aghazadeh, M.R. Ganjali, P. Norouzi, T. Doroudi, and P.H. Kolivand, Mater. Lett. 189, 290 (2017).CrossRefGoogle Scholar
  32. 32.
    D.H. Kuo, C.Y. Lin, Y.C. Jhou, J.Y. Cheng, and G.S. Liou, Polym. Compos. 34, 252 (2013).CrossRefGoogle Scholar
  33. 33.
    R. Uotila, U. Hippi, S. Paavola, and J. Seppala, Polymer 46, 7923 (2005).CrossRefGoogle Scholar
  34. 34.
    D. Hu, H. Ma, Y. Tanaka, L. Zhao, and Q. Feng, Chem. Mater. 27, 4983 (2015).CrossRefGoogle Scholar
  35. 35.
    J. Mijovic and J. Wijaya, Polym. Compos. 11, 184 (1990).CrossRefGoogle Scholar
  36. 36.
    A.R. Von Hippel, Dielectric and Waves (New York: Wiley, 1954).Google Scholar
  37. 37.
    X. Xiao, H. Yang, N. Xu, L. Hu, and Q. Zhang, RSC Adv. 5, 79342 (2015).CrossRefGoogle Scholar
  38. 38.
    Y. Yang, H. Sun, D. Yin, Z. Lu, J. Wei, R. Xiong, J. Shi, Z. Wang, Z. Liu, and Q. Lei, J. Mater. Chem. A 3, 4916 (2015).CrossRefGoogle Scholar
  39. 39.
    E. Jayamania, S. Hamdan, M.R. Rahman, and M.K.B. Bakria, Proc. Eng 97, 536 (2014).CrossRefGoogle Scholar
  40. 40.
    S. Joseph and S. Thomas, J. Appl. Polym. Sci. 109, 256 (2008).CrossRefGoogle Scholar
  41. 41.
    S.O. Kasap, Principles of Electronic Materials and Devices (New York: McGraw-Hill, 2006).Google Scholar
  42. 42.
    G. Peng, X. Zhao, Z. Zhan, S. Ci, Q. Wang, and Y. Liang, RSC Adv. 4, 16849 (2014).CrossRefGoogle Scholar
  43. 43.
    S. Luo, Y. Shen, S. Yu, Y. Wan, W.H. Liao, R. Sun, and C.P. Wong, Energy Environ. Sci. 10, 137 (2017).CrossRefGoogle Scholar
  44. 44.
    F.A. He, K.H. Lam, J.T. Fan, and L.W. Chan, Polym. Test. 32, 927 (2013).CrossRefGoogle Scholar
  45. 45.
    H. Tang, Z. Ma, J. Zhong, J. Yang, R. Zhao, and X. Liu, Colloids Surf. A Physicochem. Eng. Asp. 384, 311 (2011).CrossRefGoogle Scholar
  46. 46.
    Y. Niu, Y. Bai, K. Yu, Y. Wang, F. Xiang, and H. Wang, ACS Appl. Mater. Interfaces 7, 24168 (2015).CrossRefGoogle Scholar
  47. 47.
    Q. Chen, B.J. Chu, X. Zhou, and Q.M. Zhang, Appl. Phys. Lett. 91, 062907 (2007).CrossRefGoogle Scholar
  48. 48.
    J. Chon, S. Ye, K.J. Cha, S.C. Lee, Y.S. Koo, J.H. Jung, and Y.K. Kwon, Chem. Mater. 22, 5445 (2010).CrossRefGoogle Scholar
  49. 49.
    K. Yu, Y. Niu, Y. Zhou, Y. Bai, and H. Wang, J. Am. Ceram. Soc. 96, 2519 (2013).CrossRefGoogle Scholar
  50. 50.
    J. Li, J. Claude, L.E.N. Franco, S.I. Seok, and Q. Wang, Chem. Mater. 20, 6304 (2008).CrossRefGoogle Scholar
  51. 51.
    S. Luo, S. Yu, R. Sun, and C.P. Wong, ACS Appl. Mater. Interfaces 6, 176 (2014).CrossRefGoogle Scholar
  52. 52.
    N. Phromviyo, P. Thongbai, and S. Maensiri, Appl. Surf. Sci. 446, 236 (2018).CrossRefGoogle Scholar
  53. 53.
    M.S. Tamboli, P.K. Palei, S.S. Patil, M.V. Kulkarni, N.N. Maldar, and B.B. Kale, Dalton Trans. 43, 13232 (2014).CrossRefGoogle Scholar
  54. 54.
    E.A. Stefanescu, X. Tan, Z. Lin, N. Bowler, and M.R. Kessler, Polymer 52, 2016 (2011).CrossRefGoogle Scholar
  55. 55.
    H.W. Choi, Y.W. Heo, J.H. Lee, J.J. Kim, H.Y. Lee, E.T. Park, and Y.K. Chung, Integr. Ferroelectr. 87, 85 (2007).CrossRefGoogle Scholar
  56. 56.
    C. Gavade, N.L. Singh, D. Singh, S. Shah, A. Tripathi, and D.K. Avasthi, Integr. Ferroelectr. 117, 76 (2010).CrossRefGoogle Scholar
  57. 57.
    N. Xu, L. Hu, Q. Zhang, X. Xiao, H. Yang, and E. Yu, ACS Appl. Mater. Interfaces 7, 27373 (2015).CrossRefGoogle Scholar
  58. 58.
    G.C. Psarras, Compos. Part A 37, 1545 (2006).CrossRefGoogle Scholar
  59. 59.
    A. Dey, S. De, A. De, and S.K. De, Nanotechnology 15, 1277 (2004).CrossRefGoogle Scholar
  60. 60.
    S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, Macromolecules 36, 5187 (2003).CrossRefGoogle Scholar
  61. 61.
    K. Ahmad, W. Pan, and S.L. Shi, Appl. Phys. Lett. 89, 133122 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Srikanta Moharana
    • 1
  • Manoj Kumar Chopkar
    • 3
  • Ram Naresh Mahaling
    • 1
    • 2
  1. 1.Laboratory of Polymeric and Materials Chemistry, School of ChemistrySambalpur UniversityBurlaIndia
  2. 2.Nano Research CentreSambalpur UniversityBurlaIndia
  3. 3.Department of Metallurgical EngineeringNational Institute of Technology (NIT) RaipurRaipurIndia

Personalised recommendations