Advertisement

Experimental Observation of Diffusion Reaction in the (Sn-Ag)/Cu System at Solid-State Temperatures

  • M. Nakayama
  • M. O
  • M. KajiharaEmail author
Article
  • 9 Downloads

Abstract

The diffusion reaction kinetics for Sn-Ag alloys with pure Cu has been examined experimentally to determine the effects of adding Ag to Sn on the growth behavior of compounds at a heated interface between a Sn-base solder and a Cu-base conductor. A solid-state diffusion bonding technique was utilized to make sandwich (Sn-Ag)/Cu/(Sn-Ag) diffusion couples with Ag mol fraction of 0.011 to 0.033. The diffusion couples were isothermally annealed at 433 K to 473 K for up to 1944 h. During annealing, Cu6Sn5 and Cu3Sn layers formed at the bonded (Sn-Ag)/Cu interface in the diffusion couple. The layer thickness of Cu3Sn (l3) was less than that of Cu6Sn5 (l6), and the concentration of Ag was negligible in both Cu6Sn5 and Cu3Sn. The total thickness (l = l3 + l6) was proportional to a power function of the annealing time with an exponent n of 0.30 to 0.40. Because n is less than 0.5, boundary diffusion as well as volume diffusion must contribute to the layer growth. The ratios of l3 and l6 to l (r3 and r6, respectively) were insensitive to the annealing time and the Ag concentration. Addition of Ag to Sn barely affects the layer growth. The value of r3 was 0.34, 0.34, and 0.30 at temperature of 433 K, 453 K, and 473 K, respectively, with corresponding value of r6 of 0.66, 0.66, and 0.70, respectively.

Keywords

Metallization solder intermetallic compounds tin silver copper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The present study was supported by the Iketani Science and Technology Foundation in Japan. The study was also partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

  1. 1.
    J. Glazer, Int. Mater. Rev. 40, 65 (1995).CrossRefGoogle Scholar
  2. 2.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).CrossRefGoogle Scholar
  3. 3.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).CrossRefGoogle Scholar
  4. 4.
    H.W. Miao and J.G. Duh, Mater. Chem. Phys. 71, 255 (2001).CrossRefGoogle Scholar
  5. 5.
    D.R. Frear, J.W. Jang, J.K. Lin, and C. Zang, JOM 53, 28 (2001).CrossRefGoogle Scholar
  6. 6.
    B.L. Young, J.G. Duh, and B.S. Chiou, J. Electron. Mater. 30, 543 (2001).CrossRefGoogle Scholar
  7. 7.
    K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).CrossRefGoogle Scholar
  8. 8.
    K.S. Bae and S.J. Kim, J. Mater. Res. 17, 743 (2003).CrossRefGoogle Scholar
  9. 9.
    M. McCormack, S. Jin, G.W. Kammlott, and H.S. Chen, Appl. Phys. Lett. 63, 15 (1993).CrossRefGoogle Scholar
  10. 10.
    W. Yang, R.W. Messler Jr., and L.E. Felton, J. Electron. Mater. 23, 765 (1994).CrossRefGoogle Scholar
  11. 11.
    S.K. Kang, R.S. Rai, and S. Purushothanman, J. Electron. Mater. 25, 1113 (1996).CrossRefGoogle Scholar
  12. 12.
    K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).CrossRefGoogle Scholar
  13. 13.
    T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen, and C.Y. Li, J. Electron. Mater. 29, 1194 (2000).CrossRefGoogle Scholar
  14. 14.
    T. Hiramori, M. Ito, Y. Tanii, A. Hirose, and K.F. Kobayashi, Mater. Trans. 44, 2375 (2003).CrossRefGoogle Scholar
  15. 15.
    W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, Mater. Sci. Eng. A 396, 385 (2005).CrossRefGoogle Scholar
  16. 16.
    A. Sharif and Y.C. Chan, J. Electron. Mater. 34, 46 (2005).CrossRefGoogle Scholar
  17. 17.
    G.Y. Jang and J.G. Duh, J. Electron. Mater. 34, 68 (2005).CrossRefGoogle Scholar
  18. 18.
    F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A 420, 39 (2006).CrossRefGoogle Scholar
  19. 19.
    N. Dariavach, P. Callahan, J. Liang, and R. Fournelle, J. Electron. Mater. 35, 1581 (2009).CrossRefGoogle Scholar
  20. 20.
    P. Schmitt, P. Kaiser, C. Savio, M. Tranitz, and U. Eitner, Energy Procedia 27, 664 (2012).CrossRefGoogle Scholar
  21. 21.
    L. Zakraysek, Welding Res. Suppl. Nov. 536, 536 (1972).Google Scholar
  22. 22.
    K.N. Tu, Acta Metall. 21, 347 (1973).CrossRefGoogle Scholar
  23. 23.
    M. Onishi and H. Fujibuchi, Trans. JIM 16, 539 (1975).CrossRefGoogle Scholar
  24. 24.
    H.N. Keller, IEEE Trans. Compon. Hybrids Manuf. Technol. CHMT-2, 180 (1979).CrossRefGoogle Scholar
  25. 25.
    H.N. Keller and J.M. Morabito, Surf. Interface Anal. 3, 16 (1981).CrossRefGoogle Scholar
  26. 26.
    J.O.G. Parent, D.D.L. Chung, and I.M. Bernstein, J. Mater. Sci. 23, 2564 (1988).CrossRefGoogle Scholar
  27. 27.
    A.J. Sunwoo, J.W. Morris Jr., and G.K. Lucey Jr., Metall. Trans. A 23, 1323 (1992).CrossRefGoogle Scholar
  28. 28.
    P.T. Vianco, P.F. Hlava, and A.L. Kilgo, J. Electron. Mater. 23, 583 (1994).CrossRefGoogle Scholar
  29. 29.
    D.R. Frear and P.T. Vianco, Metall. Trans. A 25, 1509 (1994).CrossRefGoogle Scholar
  30. 30.
    S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 28, 1209 (1999).CrossRefGoogle Scholar
  31. 31.
    T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Sci. Eng. A 396, 115 (2005).CrossRefGoogle Scholar
  32. 32.
    M. Nakayama and M. Kajihara, Mater. Trans. 55, 1266 (2014).CrossRefGoogle Scholar
  33. 33.
    M. Nakayama and M. Kajihara, Mater. Trans. 56, 798 (2015).CrossRefGoogle Scholar
  34. 34.
    M. Nakayama, M. O, and M. Kajihara, Mater. Trans. 58, 561 (2017).CrossRefGoogle Scholar
  35. 35.
    A. Furuto and M. Kajihara, Mater. Trans. 49, 294 (2008).CrossRefGoogle Scholar
  36. 36.
    Metals Data Book, ed. Jpn. Inst. Met., Maruzen, Tokyo, p. 13 (1997).Google Scholar
  37. 37.
    M. Kajihara, Acta Mater. 52, 1193 (2004).CrossRefGoogle Scholar
  38. 38.
    M. Kajihara, Mater. Sci. Eng. A 403, 234 (2005).CrossRefGoogle Scholar
  39. 39.
    M. Kajihara, Defect Diffus. Forum 249, 91 (2006).CrossRefGoogle Scholar
  40. 40.
    M. Kajihara, Mater. Trans. 46, 2142 (2005).CrossRefGoogle Scholar
  41. 41.
    M. Kajihara, Mater. Trans. 47, 1480 (2006).CrossRefGoogle Scholar
  42. 42.
    M. Kajihara and T. Yamashina, J. Mater. Sci. 42, 2432 (2007).CrossRefGoogle Scholar
  43. 43.
    M. Kajihara, Mater. Trans. 49, 715 (2008).CrossRefGoogle Scholar
  44. 44.
    M. Kajihara, J. Mater. Sci. 44, 2109 (2009).CrossRefGoogle Scholar
  45. 45.
    M. Kajihara, Mater. Trans. 51, 1242 (2010).CrossRefGoogle Scholar
  46. 46.
    M. Kajihara, Mater. Trans. 53, 1896 (2012).CrossRefGoogle Scholar
  47. 47.
    T. Takenaka, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Sci. Eng. A 406, 134 (2005).CrossRefGoogle Scholar
  48. 48.
    T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Trans. 46, 1825 (2005).CrossRefGoogle Scholar
  49. 49.
    T. Takenaka, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Sci. Eng. A 427, 210 (2006).CrossRefGoogle Scholar
  50. 50.
    T. Sakama and M. Kajihara, J. Alloys Compd. 475, 608 (2009).CrossRefGoogle Scholar
  51. 51.
    T. Sakama and M. Kajihara, Mater. Trans. 50, 266 (2009).CrossRefGoogle Scholar
  52. 52.
    M. Hashiba, W. Shinmei, and M. Kajihara, J. Electron. Mater. 41, 32 (2012).CrossRefGoogle Scholar
  53. 53.
    M. Hashiba, W. Shinmei, and M. Kajihara, J. Electron. Mater. 43, 247 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Graduate SchoolTokyo Institute of TechnologyYokohamaJapan
  2. 2.Department of Materials Science and EngineeringTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations