Advertisement

First-Principles Study of Perovskite Molybdates AMoO3 (A = Ca, Sr, Ba)

  • Somia
  • Shahid Mehmood
  • Zahid AliEmail author
  • Imad Khan
  • Fawad Khan
  • Iftikhar Ahmad
Article
  • 8 Downloads

Abstract

Density functional calculations have been carried out to determine various physical properties of the perovskite molybdates AMoO3 (A = Ca, Sr, and Ba) using different exchange–correlation approximations including the generalized gradient approximation (GGA), GGA with Hubbard potential (GGA + U), and GGA with spin–orbit coupling (GGA + SOC), revealing that the strong spin–orbit coupling effect in these compounds is dominant. Based on their elastic properties, these compounds are expected to be mechanically stable, anisotropic, and ductile. Their electronic band structure and density of states indicate metallic nature due to hybridization of O p- and Mo d-states, and in particular delocalization of t2g orbital. The electrical properties indicate that these compounds will exhibit significant electrical conductivity above room temperature. The ground-state energy of different magnetic phases and post-DFT calculations showed that these compounds are nonmagnetic/paramagnetic.

Keywords

Oxides ab initio calculations mechanical properties electronic structures magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Radetinac, K.S. Takahashi, L. Alff, M. Kawasaki, and Y. Tokura, Appl. Phys. Express 3, 73003 (2010).CrossRefGoogle Scholar
  2. 2.
    Z. Ali, I. Ahmad, I. Khan, and B. Amin, Intermetallics 31, 287 (2012).CrossRefGoogle Scholar
  3. 3.
    S. Takeno, T. Ohara, K. Sano, and T. Kawakubo, Surf. Interface Anal. 35, 29 (2003).CrossRefGoogle Scholar
  4. 4.
    M. Yoshino, K. Nakatsuka, H. Yukawa, and M. Morinaga, Solid State Ion. 127, 109 (2000).CrossRefGoogle Scholar
  5. 5.
    Z. Fang, N. Nagaosa, K.S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, Science 302, 92 (2003).CrossRefGoogle Scholar
  6. 6.
    K. Kamata, T. Nakamura, and T. Sata, Mater. Res. Bull. 10, 373 (1975).CrossRefGoogle Scholar
  7. 7.
    J.B. Goodenough, J. Appl. Phys. 37, 1415 (1955).CrossRefGoogle Scholar
  8. 8.
    J.B. Goodenough, J.M. Longo, Landolt-Bornstein, in New Series, Group III, Magnetic and Other Properties of Oxides and Related Compounds, vol. 4, Part A. Springer, New York (1970).Google Scholar
  9. 9.
    J.B. Goodenough, J.M. Longo, and J.A. Kafalas, Mater. Res. Bull. 8, 471 (1968).CrossRefGoogle Scholar
  10. 10.
    W.H. McCarroll, R. Ward, and L. Katz, J. Am. Chem. Soc. 78, 2909 (1955).CrossRefGoogle Scholar
  11. 11.
    K. Kamata, T. Nakamura, and T. Sata, Chem. Lett. 4, 81 (1975).CrossRefGoogle Scholar
  12. 12.
    L.H. Brixner, J. Inorg. Nucl. Chem. 14, 225 (1960).CrossRefGoogle Scholar
  13. 13.
    A.S. Verma, A. Kumar, and S.R. Bhardwaj, Phys. Status Solidi B 245, 1520 (2008).CrossRefGoogle Scholar
  14. 14.
    A.S. Verma and V.K. Jindal, J. Alloys Compd. 485, 514 (2009).CrossRefGoogle Scholar
  15. 15.
    R.L. Moreira and A. Dias, J. Phys. Chem. Solids 68, 1617 (2007).CrossRefGoogle Scholar
  16. 16.
    A. Majid and Y.S. Lee, in Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, New York, USA, p. 175 (2010).Google Scholar
  17. 17.
    L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Lee, J. Phys. Chem. Solids 67, 1531 (2006).CrossRefGoogle Scholar
  18. 18.
    R. Ubic, J. Am. Ceram. Soc. 90, 3326 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Kubo and W. Ueda, Mater. Res. Bull. 44, 906 (2009).CrossRefGoogle Scholar
  20. 20.
    M. Sahu, K. Krishnan, M. Saxena, and S. Dash, J. Nucl. Mater. 457, 29 (2015).CrossRefGoogle Scholar
  21. 21.
    K. Kurosaki, T. Oyama, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 372, 65 (2004).CrossRefGoogle Scholar
  22. 22.
    S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Electron. Mater. 46, 6870 (2017).CrossRefGoogle Scholar
  23. 23.
    H. Hopper, J. Le, J. Cheng, T. Weller, R. Marschall, J. Bloh, D. Macphee, and A. Folli, J. Solid State Chem. 234, 87 (2016).CrossRefGoogle Scholar
  24. 24.
    H. Mizoguchi, N. Kitamura, K. Fukumi, T. Mihara, J. Nishii, M. Nakamura, N. Kikuchi, H. Hosono, and H. Kawazoe, J. Appl. Phys. 87, 4617 (2000).CrossRefGoogle Scholar
  25. 25.
    S. Zhang, Y. Sun, B. Zhao, X. Zhu, and W. Song, Phys. Status Solidi B 243, 1331 (2006).CrossRefGoogle Scholar
  26. 26.
    B. Zhao, Y. Sun, S. Zhang, W. Song, and J. Dai, J. Appl. Phys. 102, 113903 (2007).CrossRefGoogle Scholar
  27. 27.
    A. Daga and S. Sharma, J. Mod. Phys. 3, 1891 (2012).CrossRefGoogle Scholar
  28. 28.
    Z.Z. Li, G.J. Hua, J. Yu, and H. Xing, Phys. B 407, 1990 (2012).CrossRefGoogle Scholar
  29. 29.
    S.A. Dar, V. Srivastava, and U.K. Sakalle, Mater. Res. Express 4, 086304 (2017).CrossRefGoogle Scholar
  30. 30.
    P.M. Woodward, J. Goldberger, M.W. Stoltzfus, H.W. Eng, R.A. Ricciardo, P.N. Santhosh, P. Karen, and A.R. Moodenbaugh, J. Am. Ceram. Soc. 91, 1796 (2008).CrossRefGoogle Scholar
  31. 31.
    M.S. Park and B.I. Min, Phys. Rev. B 71, 052405 (2005).CrossRefGoogle Scholar
  32. 32.
    H.H. Wang, D.F. Cui, Y.L. Zhou, Z.H. Chen, F. Chen, T. Zhao, H.B. Lu, G.Z. Yang, M.C. Xu, Y.C. Lan, X.L. Chen, H.J. Qian, and F.Q. Liu, J. Cryst. Growth 226, 261 (2001).CrossRefGoogle Scholar
  33. 33.
    G.H. Bouchard and M.J. Sienko, Inorg. Chem. 7, 441 (1958).CrossRefGoogle Scholar
  34. 34.
    S. Hayashi and R. Aoki, Mater. Res. Bull. 14, 409 (1979).CrossRefGoogle Scholar
  35. 35.
    I. Nagai, N. Shirakawa, S.I. Ikeda, R. Iwasaki, H. Nishimura, and M. Kosaka, Appl. Phys. Lett. 87, 024105 (2005).CrossRefGoogle Scholar
  36. 36.
    R. Ramesh and D.G. Schlom, MRS Bull. 33, 1006 (2008).CrossRefGoogle Scholar
  37. 37.
    M.A. Subramanian, G. Aravamudan, and G.V.S. Rao, Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
  38. 38.
    W. Kohn and L.S. Sham, Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
  39. 39.
    O.K. Andersen, Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
  40. 40.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).CrossRefGoogle Scholar
  41. 41.
    A.G. Petukhov and I.I. Mazin, Phys. Rev. B 67, 153106 (2003).CrossRefGoogle Scholar
  42. 42.
    P. Novak, J. Kunes, L. Chaput, and W.E. Pickett, Phys. Status Solidi B 243, 563 (2006).CrossRefGoogle Scholar
  43. 43.
    V.I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).CrossRefGoogle Scholar
  44. 44.
    A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).CrossRefGoogle Scholar
  45. 45.
    V.I. Anisimov, I.V. Solovyev, and M.A. Korotin, Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
  46. 46.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K (Austria: Vienna University of Technology, 2001).Google Scholar
  47. 47.
    F. Birch, Phys. Rev. 71, 809 (1947).CrossRefGoogle Scholar
  48. 48.
    A.A. Emery and C. Wolverton, Sci. Data 4, 170153 (2017).CrossRefGoogle Scholar
  49. 49.
    S. Nazir, J. Appl. Phys. 122, 173903 (2017).CrossRefGoogle Scholar
  50. 50.
    S. Tariq, M.I. Jamil, A. Sharif, S.M. Ramay, H. Ahmad, N.U. Qamar, and B. Tahir, Appl. Phys. A 124, 44 (2018).CrossRefGoogle Scholar
  51. 51.
    Y. Pan, W.T. Zheng, W.M. Guan, K.H. Zhang, and X.F. Fan, J. Solid State Chem. 207, 29 (2013).CrossRefGoogle Scholar
  52. 52.
    S.E. Shirsath, S.M. PaMonge, R.H. Kadam, M.L. Mane, and K.M. Jadhav, J. Mol. Struct. 1024, 77 (2012).CrossRefGoogle Scholar
  53. 53.
    S.M. PaMonge, S.E. Shirsath, K.S. Lohar, S.G. Algude, S.R. Kamble, N. Kulkarni, D.R. Mane, and K.M. Jadhav, J. Magn. Magn. Mater. 325, 107 (2013).CrossRefGoogle Scholar
  54. 54.
    J. Wang and S. Yip, Phys. Rev. Lett. 71, 4182 (1993).CrossRefGoogle Scholar
  55. 55.
    R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952).CrossRefGoogle Scholar
  56. 56.
    W. Voigt, Ann. Phys. 38, 573 (1889).CrossRefGoogle Scholar
  57. 57.
    A. Reuss and Z. Angew, Math. Phys. 9, 49 (1929).Google Scholar
  58. 58.
    C.H. Jenkins and S.K. Khanna, Mech. Mater., ISBN 0-12-383852-5, 62–72 (2005).Google Scholar
  59. 59.
    M. Fine, L. Brown, and H. Marcus, Scr. Metall. 18, 951 (1984).CrossRefGoogle Scholar
  60. 60.
    E. Screiber, O. Anderson, and N. Soga, Elastic Constants and Their Measurements (New York: McGraw Hill, 1973).Google Scholar
  61. 61.
    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).CrossRefGoogle Scholar
  62. 62.
    S.F. Pugh, Philos. Mag. A 45, 823 (1954).CrossRefGoogle Scholar
  63. 63.
    H. Mizoguchi, K. Fukumi, N. Kitamura, T. Takeuchi, J. Hayakawa, H. Yamanaka, H. Yanagi, H. Hosono, and H. Kawazoe, J. Appl. Phys. 85, 6502 (1999).CrossRefGoogle Scholar
  64. 64.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  65. 65.
    S. Hayashi, R. Aoki, and T. Nakamura, Mater. Res. Bull. 14, 409 (1979).CrossRefGoogle Scholar
  66. 66.
    S. Blundell, Magnetism in Condensed Matter (New York: Oxford University Press, 2001).Google Scholar
  67. 67.
    C. Kittel, Introduction to Solid State Physics, 8th ed. (New York: Wiley, 2005).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Somia
    • 1
    • 2
  • Shahid Mehmood
    • 1
    • 2
  • Zahid Ali
    • 1
    • 2
    Email author
  • Imad Khan
    • 1
    • 2
  • Fawad Khan
    • 1
    • 2
  • Iftikhar Ahmad
    • 1
    • 3
  1. 1.Center for Computational Materials ScienceUniversity of MalakandChakdara, Dir (Lower)Pakistan
  2. 2.Department of PhysicsUniversity of MalakandChakdara, Dir (Lower)Pakistan
  3. 3.Department of PhysicsAbbottabad University of Science and TechnologyAbbottabadPakistan

Personalised recommendations