Advertisement

Thermoelectric and Transport Properties of n-type Palladium-Doped Chalcopyrite Cu1−xPdxFeS2 Compounds

  • Jiří NavratilEmail author
  • Jana Kašparová
  • Tomáš Plecháček
  • Ludvík Beneš
  • Zuzana Olmrová-Zmrhalová
  • Vladimír Kucek
  • Čestmír Drašar
Topical Collection: International Conference on Thermoelectrics 2018
  • 25 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Abstract

Semiconducting CuFeS2 with a diamond-like structure has been recently studied as a potential candidate for thermoelectric applications. In the present study, Pd substitution for Cu was examined in terms of thermoelectric properties. A series of Pd-doped Cu1−xPdxFeS2 (x = 0–0.1) samples were synthesized. The thermoelectric and transport properties of hot-pressed sample pellets were characterized. We observed three effects: (1) Pd substituted for Cu behaves as an effective donor, increasing the free electron concentration. (2) Formation of the foreign phase—PdS—was observed above the solubility limit of Pd in CuFeS2 (x ≥ 0.02). (3) Segregation of the foreign phase is accompanied by the formation of \( {\hbox{Fe}}_{\rm{Cu}}^{2 + } \) antisite defects. All these effects synergically enhanced both the power factor S2·σ and the thermoelectric parameter ZT. The highest values of the power factor (∼ 1 mW m−1 K−1) and the ZT parameter (∼ 0.19 at 573 K) were achieved in the Cu0.9Pd0.1FeS2 sample.

Keywords

CuFeS2 chalcopyrite palladium doping thermoelectrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Financial support from the Czech Science Foundation, Projects Nos. 16-07711S and 18-12761S, was greatly appreciated.

References

  1. 1.
    N. Tsujii, J. Electron. Mater. 42, 1974 (2013).CrossRefGoogle Scholar
  2. 2.
    M. DiGiuseppe, J. Steger, A. Wold, and E. Kostiner, Inorg. Chem. 13, 1828 (1974).CrossRefGoogle Scholar
  3. 3.
    L. Barkat, N. Hamdadou, M. Morsli, A. Khelil, and J.C. Bernede, J. Cryst. Growth 297, 426 (2006).CrossRefGoogle Scholar
  4. 4.
    J.H. Li, Q. Tan, and J.F. Li, J. Alloy. Compd. 551, 143 (2013).CrossRefGoogle Scholar
  5. 5.
    N. Tsujii and T. Mori, Appl. Phys. Express 6, 043001 (2013).CrossRefGoogle Scholar
  6. 6.
    Y. Li, T. Zhang, Y. Qin, T. Day, G.J. Snyder, X. Shi, and L. Chen, J. Appl. Phys. 116, 203705 (2014).CrossRefGoogle Scholar
  7. 7.
    R. Ang, A.U. Khan, N. Tsujii, K. Takai, R. Nakamura, and T. Mori, Angew. Chem. Int. Ed. 54, 12909 (2015).CrossRefGoogle Scholar
  8. 8.
    T. Hamajima, T. Kambara, K.I. Gondaira, and T. Oguchi, Phys. Rev. B 24, 3349 (1981).CrossRefGoogle Scholar
  9. 9.
    M. Zhou, X. Gao, Y. Cheng, X.R. Chen, and L.C. Cai, Appl. Phys. A Mater. Sci. Process. 118, 1145 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Conejeros, P. Alemany, M. Llunell, I.P.R. Moreira, V. Sanchez, and J. Llanos, Inorg. Chem. 54, 4840 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, and T. Mori, Mater. Today Phys. 3, 85 (2017).CrossRefGoogle Scholar
  12. 12.
    H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, and T. Mori, Appl. Phys. Lett. 110, 072107 (2017).CrossRefGoogle Scholar
  13. 13.
    D. Berthebaud, O.I. Lebedev, and A. Maignan, J. Materiomics 1, 68 (2015).CrossRefGoogle Scholar
  14. 14.
    H. Xie, X. Su, G. Zheng, T. Zhu, K. Yin, Y. Yan, C. Uher, M.G. Kanatzidis, and X. Tang, Adv. Energy Mater. 7, 1601299 (2017).CrossRefGoogle Scholar
  15. 15.
    EVA, ver.19, Diffracplus Basic Evaluating Package. Bruker AXS GmbH (2013).Google Scholar
  16. 16.
    K.K. Wu, B. Ramachandran, Y.K. Kuo, R. Sankar, and F.C. Chou, J. Alloy. Compd. 682, 225–231 (2016).CrossRefGoogle Scholar
  17. 17.
    L.J. Cabri, Econ. Geol. 68, 443 (1973).CrossRefGoogle Scholar
  18. 18.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).CrossRefGoogle Scholar
  19. 19.
    L.C. Chen, B.B. Jiang, H. Yu, H.J. Pang, L. Su, X. Shi, L.D. Chen, and X.J. Chen, RSC Adv. 8, 13154 (2018).CrossRefGoogle Scholar
  20. 20.
    E. Conwell and V.F. Weisskopf, Phys. Rev. 77, 388 (1950).CrossRefGoogle Scholar
  21. 21.
    J. Callaway and H.C. Vonbaeyer, Phys. Rev. Lett. 5, 223 (1960).Google Scholar
  22. 22.
    G.A. Slack, Phys. Rev. 105, 829 (1957).CrossRefGoogle Scholar
  23. 23.
    B. Abeles, Phys. Rev. 131, 1906 (1963).CrossRefGoogle Scholar
  24. 24.
    C. Rincón, M.L. Valeri-Gil, and S.M. Wasim, Phys. Status Solidi (a) 147, 409 (1995).CrossRefGoogle Scholar
  25. 25.
    J.W. Shen, X.Y. Zhang, Z.W. Chen, S.Q. Lin, J. Li, W. Li, S.S. Li, Y. Chen, and Y.Z. Pei, J. Mater. Chem. A 5, 5314 (2017).CrossRefGoogle Scholar
  26. 26.
    Y. Gelbstein, J. Appl. Phys. 105, 023713 (2009).CrossRefGoogle Scholar
  27. 27.
    J. Navratil, T. Plechacek, C. Drasar, V. Kucek, F. Laufek, E. Cernoskova, L. Benes, and M. Vlcek, J. Electron. Mater. 45, 2904 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations