Advertisement

Evolution of the Microstructure of Sn58Bi Solder Paste with Sn-3.0Ag-0.5Cu Addition During Isothermal Aging

  • Ruisheng Xu
  • Yang LiuEmail author
  • Hao Zhang
  • Zhao Li
  • Fenglian Sun
  • Guoqi Zhang
Article
  • 16 Downloads

Abstract

Eutectic Sn58Bi (SnBi) solder paste mixed with 0 wt.%, 3 wt.%, 5 wt.%, 8 wt.% and 15 wt.% of Sn-3.0Ag-0.5Cu (SAC) paste was prepared by mechanical mixing. The effects of SAC paste additions on the microstructure evolution of SnBi-SAC/Cu composite solder joints during isothermal aging were investigated. The results indicated that the number of large Bi-rich phases decreased and the relative areas of β-Sn increased with increasing SAC content. Moreover, 1-μm Bi-rich particles were found near the Bi-rich phases. During the isothermal aging process, the diameter of the 1-μm Bi-rich particles in the solder bulk increased by about 50% with aging time by Ostwald ripening. The thickness of the interfacial intermetallic compound in all the solder joints increased slightly during the aging process. The formation of Cu6Sn5 was suppressed by the Bi-rich phases above the Cu6Sn5 layer with the aging time increasing. In addition, the solder bulk showed many cracks along the β-Sn grain boundaries after isothermal aging when the content of SAC paste was 5 wt.%. With 8 wt.% or 15 wt.% SAC, fractures were more obvious near the interface than away from the interface.

Keywords

SnBi SAC isothermal aging microstructure IMC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51604090), Natural Science Foundation of Heilongjiang Province (No. E2017050), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015042).

References

  1. 1.
    C. Wu, J. Shen, and C. Peng, J. Mater. Sci. Mater. Electron. 23, 14 (2012).CrossRefGoogle Scholar
  2. 2.
    J. Shen, C. Wu, and S. Li, J. Mater. Sci. Mater. Electron. 23, 156 (2012).CrossRefGoogle Scholar
  3. 3.
    Q. Li and Y.C. Chan, J. Alloys Compd. 567, 47 (2013).CrossRefGoogle Scholar
  4. 4.
    J. Shen, M. Zhao, P. He, and Y. Pu, J. Alloys Compd. 574, 451 (2013).CrossRefGoogle Scholar
  5. 5.
    V.L. Niranjani, P. Venkateswarlu, V. Singh, B.S.S.C. Rao, and S.V. Kamat, Trans. Indian Inst. Met. 71, 1497 (2018).CrossRefGoogle Scholar
  6. 6.
    Y. Ma, X. Li, L. Yang, W. Zhou, M. Wang, W. Zhu, and P. Wu, Mater. Sci. Eng. A Struct. 696, 437 (2017).CrossRefGoogle Scholar
  7. 7.
    W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, and A. Garcia, J. Alloys Compd. 572, 97 (2013).CrossRefGoogle Scholar
  8. 8.
    Z. Lai and D. Ye, J. Electron. Mater. 45, 3702 (2016).CrossRefGoogle Scholar
  9. 9.
    X. Zhao, M. Muraoka, and M. Saka, J. Electron. Mater. 46, 1287 (2017).CrossRefGoogle Scholar
  10. 10.
    W.R. Myung, Y. Kim, K.Y. Kim, and S.B. Jung, J. Electron. Mater. 45, 3651 (2016).CrossRefGoogle Scholar
  11. 11.
    D. Ma and P. Wu, Trans. Nonferr. Metal. Soc. 25, 1225 (2015).CrossRefGoogle Scholar
  12. 12.
    W. Zhu, Y. Ma, X. Li, W. Zhou, and P. Wu, J. Mater. Sci. Mater. Electron. 29, 7575 (2018).CrossRefGoogle Scholar
  13. 13.
    X. Li, Y. Ma, W. Zhou, and P. Wu, Mater. Sci. Eng. A Struct. 684, 328 (2017).CrossRefGoogle Scholar
  14. 14.
    L. Yang, W. Zhou, X. Li, Y. Ma, Y. Liang, W. Cui, and P. Wu, J. Mater. Sci. Mater. Electron. 27, 12264 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. Liu, H. Zhang, and F. Sun, J. Mater. Sci. Mater. Electron. 27, 2235 (2016).CrossRefGoogle Scholar
  16. 16.
    H. Sun, Q. Li, and Y.C. Chan, J. Mater. Sci. Mater. Electron. 25, 4380 (2014).CrossRefGoogle Scholar
  17. 17.
    E.A. Eid, A.N. Fouda, and E.S.M. Duraia, Mater. Sci. Eng. A Struct. 657, 104 (2016).CrossRefGoogle Scholar
  18. 18.
    M.A.A.M. Salleh, S.D. Mcdonald, Y. Terada, H. Yasuda, and K. Nogita, Mater. Des. 82, 136 (2015).CrossRefGoogle Scholar
  19. 19.
    H. Sun, Y.C. Chan, and F. Wu, J. Mater. Sci. Mater. Electron. 26, 5129 (2015).CrossRefGoogle Scholar
  20. 20.
    Y. Liu, H. Fu, H. Zhang, F. Sun, X. Wang, and G. Zhang, J. Mater. Sci. Mater. Electron. 28, 19113 (2017).CrossRefGoogle Scholar
  21. 21.
    O. Mokhtari and H. Nishikawa, Mater. Sci. Eng. A Struct. 651, 831 (2016).CrossRefGoogle Scholar
  22. 22.
    X. Hu, Y. Li, and Z. Min, J. Mater. Sci. Mater. Electron. 24, 2027 (2013).CrossRefGoogle Scholar
  23. 23.
    X. Hu, Q. Huang, Y. Li, Y. Liu, and Z. Min, J. Mater. Sci. Mater. Electron. 26, 5140 (2015).CrossRefGoogle Scholar
  24. 24.
    F. Wang, D. Li, Z. Zhang, M. Wu, and C. Yan, J. Mater. Sci. Mater. Electron. 28, 19051 (2017).CrossRefGoogle Scholar
  25. 25.
    T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R. 49, 1 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ruisheng Xu
    • 1
  • Yang Liu
    • 1
    • 2
    Email author
  • Hao Zhang
    • 1
    • 2
  • Zhao Li
    • 1
  • Fenglian Sun
    • 1
  • Guoqi Zhang
    • 2
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina
  2. 2.EEMCS FacultyDelft University of TechnologyDelftNetherlands

Personalised recommendations