Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 1268–1275 | Cite as

Contact Resistance Effects in Ni Drain-Source P3HT/PVA OFETs

  • Gabriel Volkweis LeiteEmail author
  • Henri Ivanov Boudinov
Article
  • 10 Downloads

Abstract

Ni bottom contacts and Al top gate organic field effect transistors of Poly 3-hexylthiophene and cross-linked Poly Vinyl Alcohol with different channel lengths (5 μm, 10 μm, 20 μm and 40 μm) were made on glass substrates, using standard photolithography and oxygen plasma etching. The transistors presented good charge mobility, high ION/IOFF and excellent environmental and temporal stability. The Shockley model and the Transmission Line Method (TLM) were applied to characterize the transistors. Mobility was extracted by both methods, and the differences were discussed. The shorter the channel length and the higher the conductivity of the semiconductor, the greater the impact of the contact resistance. In such cases, the use of TLM for parameter extraction becomes essential.

Keywords

OFET PVA P3HT contact resistance organic electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 303.250/2017-8, Proc. 301.665/2013-3 e Proc. 141298/2015-4), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Finance Code 001) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

References

  1. 1.
    J. Zaumseil, P3HT Revisited—From Molecular Scale to Solar Cell Devices, ed. B.S. Ludwigs (Heidelberg: Springer, 2014), pp. 107–137.Google Scholar
  2. 2.
    H. Marien, M. Steyaert, and P. Heremans, Analog Organic Electronics (New York: Springer, 2013), pp. 1–12.CrossRefGoogle Scholar
  3. 3.
    A. Takshi, A. Dimopoulos, and J.D. Madden, IEEE Trans. Electron Devices 55, 276 (2008).CrossRefGoogle Scholar
  4. 4.
    W.S. Machado and I.A. Huemmelgen, IEEE Trans. Electron Devices 59, 1529 (2012).CrossRefGoogle Scholar
  5. 5.
    L. Kehrer, S. Winter, R. Fischer, C. Melzer, and H. Seggern, Synth. Metals 161, 2558 (2012).CrossRefGoogle Scholar
  6. 6.
    S. Das, J. Lee, T. Lim, Y. Choi, Y.S. Park, and S. Pyo, Synth. Metals 162, 598 (2012).CrossRefGoogle Scholar
  7. 7.
    E.A. van Etten, E.S. Ximenes, L.T. Tarasconi, I.T.S. Garcia, M.M.C. Forte, and H. Boudinov, Thin Solid Films 568, 111116 (2014).Google Scholar
  8. 8.
    G. Horowitz, M.E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).CrossRefGoogle Scholar
  9. 9.
    E.J. Meijer, G.H. Gelinck, E. van Veenendaal, B.H. Huisman, D.M. de Leeuw, and T.M. Klapwijk, Appl. Phys. Lett. 82, 4576 (2003).CrossRefGoogle Scholar
  10. 10.
    W.T. Li, R.B. Charters, B. Luther-Davies, and L. Mar, Appl. Surf. Sci. 223, 227 (2004).CrossRefGoogle Scholar
  11. 11.
    G.V. Leite, E.A. Van Etten, M.M.C. Forte, and H. Boudinov, Synth. Metals 229, 33 (2017).CrossRefGoogle Scholar
  12. 12.
    G.V. Leite, M.A.H. Vogt, H. Boudinov, and E.A. Van Etten, in 32nd Symposium on Microelectronics Technology and Devices (SBMicro) (2017), pp. 197–200.Google Scholar
  13. 13.
    M.R. Cavallari, J.E.E. Izquierdo, G.S. Braga, E.A.T. Dirani, M.A. Pereira-da-Silva, E.F.G. Rodríguez, and F.J. Fonseca, Sensors (Basel) 15, 9592 (2015).CrossRefGoogle Scholar
  14. 14.
    M.R. Cavallari, V.R. Zanchin, M. Pojar, A.C. Seabra, M. Pereira-da-Silva, F.J. Fonseca, and A.M. de Andrade, J. Electron. Mater. 43, 1317 (2014).CrossRefGoogle Scholar
  15. 15.
    K.-J. Baeg, D. Khim, D.-Y. Kim, J.B. Koo, I.-K. You, W.S. Choi, and Y.-Y. Noh, Thin Solid Films 518, 4024 (2010).CrossRefGoogle Scholar
  16. 16.
    L. Li, Z. Liu, L. Wang, B. Zhang, Y. Liu, and J.-P. Ao, Mater. Sci. Semicond. Process. 76, 61 (2018).CrossRefGoogle Scholar
  17. 17.
    A. Nawaz, I. Cruz-Cruz, R. Rodrigues, and I.A. Hümmelgen, Phys. Chem. Chem. Phys. 17, 26530 (2015).CrossRefGoogle Scholar
  18. 18.
    C.H. Kim, Y. Bonnassieux, and G. Horovwitz, IEEE Trans. Electron. Devices 60, 280 (2013).CrossRefGoogle Scholar
  19. 19.
    S. Luan and G.W. Neudeck, J. Appl. Phys. 72, 766 (1992).CrossRefGoogle Scholar
  20. 20.
    D. Braga, M. Ha, W. Xie, and C. Daniel Frisbie, Appl. Phys. Lett. 97, 93311 (2010).CrossRefGoogle Scholar
  21. 21.
    K. Bhargava, M. Shukla, and V. Singh, Synth. Met. 233, 15 (2017).CrossRefGoogle Scholar
  22. 22.
    B.H. Hamadani and D. Natelson, Appl. Phys. Lett. 84, 443 (2004).CrossRefGoogle Scholar
  23. 23.
    B. Park, A. Aiyar, J.-i. Hong, and E. Reichmanis, ACS Appl. Mater. Interfaces. 3, 1574 (2011).CrossRefGoogle Scholar
  24. 24.
    L. Bürgi, T.J. Richards, R.H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 6129 (2003).CrossRefGoogle Scholar
  25. 25.
    K.A. Singh, T.L. Nelson, J.A. Belot, T.M. Young, N.R. Dhumal, T. Kowalewski, R.D. McCullough, P. Nachimuthu, S. Thevuthasan, and L.M. Porter, ACS Appl. Mater. Interfaces. 3, 2973 (2011).CrossRefGoogle Scholar
  26. 26.
    A. Nawaz, M.S. Meruvia, D.L. Tarange, S.P. Gopinathan, A. Kumar, A. Kumar, H. Bhunia, A.J. Pal, and I.A. Hümmelgen, Org. Electron. 38, 89 (2016).CrossRefGoogle Scholar
  27. 27.
    G. Horowitz, R. Hajlaoui, D. Fichou, and A. El Kassmi, J. Appl. Phys. 85, 3202 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.PPGFis, Instituto de Física, UFRGSPorto AlegreBrazil

Personalised recommendations