Journal of Electronic Materials

, Volume 48, Issue 2, pp 1258–1267 | Cite as

Sol–Gel Spin-Coating Followed by Solvothermal Synthesis of Nanorods-Based ZnO Thin Films: Microstructural, Optical, and Gas Sensing Properties

  • Hamed Aleebrahim DehkordiEmail author
  • Ali Mokhtari
  • Kamran Dastafkan
  • Vishtasb Soleimanian


Zinc oxide thin films with nanorod morphology were investigated for microstructural and optical properties as well as their performance as a liquid petroleum gas sensing material. A two-step synthesis procedure consisting of sol–gel spin-coating and solvothermal methods was employed where several factors such as rational utilization of metal precursors, solvent, stabilizing, and structure directing agents, a repetitive drying-coating process, as well as post-thermal annealing were found influential to obtain qualified nanorods and a final homogeneous thin film. Compositional and optical investigations were pursued to characterize features, namely morphology, poly crystallinity, porous structure, nanocrystallite size, lattice oriented growth, textural atomic ratio, lattice purity and transparency, phonon and exciton transitions, as well as the formed structural defects via field-emission scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray, UV–Vis spectroscopy, Raman, and photoluminescence techniques. The as-prepared thin film was then used as an active LPG sensing material via a home-made gas sensor where the control sensing parameters were chamber testing temperature and gas concentration. Results showed a quantitative response of 92.7% as sensor sensitivity at an operation temperature of 250°C and a LPG concentration of 800 ppm in addition to fast response and recovery times of 44.1 s and 218.7 s, respectively.


Zinc oxide nanorods thin film microstructural properties optical characteristics gas sensing liquid petroleum gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Dastafkan, A. Kiani, A. Obeydavi, and M. Rahimi, Ultrason. Sonochem. 42, 97 (2018).Google Scholar
  2. 2.
    H. Li, Y. Zhou, G. Du, Y. Huang, and Z. Ji, J. Electron. Mater. 47, 1762 (2018).Google Scholar
  3. 3.
    D. Tamvakos, S. Lepadatu, V.A. Antohe, A. Tamvakos, P.M. Weaver, L. Piraux, M.G. Cain, and D. Pullinia, Appl. Surf. Sci. 356, 1214 (2015).Google Scholar
  4. 4.
    P.P. Pal and J. Manam, J. Lumin. 145, 340 (2014).Google Scholar
  5. 5.
    A. Tereshchenkoa, M. Bechelan, R. Viter, V. Khranovskyy, V. Smyntyna, N. Starodube, and R. Yakima, Sens. Actuators B Chem. 229, 664 (2016).Google Scholar
  6. 6.
    G. Srinivasan, N. Gopalakrishnan, Y.S. Yu, R. Kesavamoorthy, and J. Kumar, Superlattices Microstruct. 43, 113 (2008).Google Scholar
  7. 7.
    J. Huang and Q. Wan, Sensors 9, 9903 (2009).Google Scholar
  8. 8.
    P.P. Pal and J. Manam, Radiat. Phys. Chem. 88, 7 (2013).Google Scholar
  9. 9.
    X. Ma, Thin Film Solids 520, 5752 (2012).Google Scholar
  10. 10.
    V. Lair, L.S. Zivkovic, O. Lupan, and A. Ringuede, Electrochim. Acta 56, 4638 (2011).Google Scholar
  11. 11.
    E. Ghafari, Y. Feng, Y. Liu, I. Ferguson, and N. Lu, Composites B 116, 40 (2017).Google Scholar
  12. 12.
    G.N. Dar, A. Umar, S.A. Zaidi, A.A. Ibrahim, M. Abaker, S. Baskoutas, and M.S. Al-Assiri, Sens. Actuators B 173, 72 (2012).Google Scholar
  13. 13.
    C.W. Nahm, Solid State Commun. 141, 685 (2007).Google Scholar
  14. 14.
    X. Wei, W. Wang, and K. Chen, J. Phys. Chem. C 117, 23716 (2013).Google Scholar
  15. 15.
    T. Minami, S. Suzuki, and T. Miyata, Thin Solid Films 398, 53 (2001).Google Scholar
  16. 16.
    W. Tian, H. Lu, and L. Li, Nano Res. 8, 382 (2015).Google Scholar
  17. 17.
    K. Yu, Y.S. Zhang, F. Xu, Q. Li, and Z.Q. Zhu, Appl. Phys. Lett. 88, 153123 (2006).Google Scholar
  18. 18.
    P. Steigera, J. Zhang, K. Harrabi, I.A. Hussein, J.M. Downing, and M.A. McLachlan, Thin Solid Films 645, 417 (2018).Google Scholar
  19. 19.
    P. Nunes, E. Fortunato, A. Lopes, and R. Martins, Int. J. Inorg. Mater. 3, 1129 (2001).Google Scholar
  20. 20.
    A. Ghosha, R. Sharmaa, A. Ghuleb, V.S. Taura, R.A. Joshi, D.J. Desalea, Y.G. Gudagea, K.M. Jadhava, and S.H. Han, Sens. Actuators B 146, 69 (2010).Google Scholar
  21. 21.
    J.Q. Xu, Y.Q. Pan, Y.A. Shun, and Z.Z. Tian, Sens. Actuators B 66, 277 (2000).Google Scholar
  22. 22.
    L. Zhu, W. Zeng, J. Yang, and Y. Li, Mater. Lett. 230, 297 (2018).Google Scholar
  23. 23.
    H.W. Ryua, B.S. Park, S.A. Akbar, W.S. Lee, K.J. Honga, Y.J. Seo, D.C. Shin, J.S. Park, and G.P. Choi, Sens. Actuators B 96, 717 (2003).Google Scholar
  24. 24.
    X.U. Jiaqiang, C. Yuping, L. Yadong, and S. Jianian, J. Mater. Sci. 40, 2919 (2005).Google Scholar
  25. 25.
    V. Musat, A.M. Rego, R. Monteiro, and E. Fortunato, Thin Solid Films 516, 1512 (2008).Google Scholar
  26. 26.
    D.S. Dhawale, D.P. Dubal, A.M. More, T.P. Gujar, and C.D. Lokhande, Sens. Actuators B 147, 488 (2010).Google Scholar
  27. 27.
    L. Zhu, W. Zeng, and Y. Li, Mater. Lett. 228, 331 (2018).Google Scholar
  28. 28.
    J.Y. Park, H. Kim, D. Rana, D. Jamwal, and A. Katoch, Nanotechnology 28, 9 (2017).Google Scholar
  29. 29.
    M.M.H. Bhuiyan, T. Ueda, T. Ikegami, and K. Ebihara, Jpn. J. Appl. Phys. 45, 8469 (2006).Google Scholar
  30. 30.
    A. Montazeri and F. JamaliSheini, Sens. Actuators B Chem 242, 778 (2017).Google Scholar
  31. 31.
    P. Tyagi, A. Sharma, M. Tomar, and V. Gupta, Sens. Actuators B Chem. 224, 282 (2016).Google Scholar
  32. 32.
    L. Zhu, Y. Li, and W. Zeng, Appl. Surf. Sci. 427, 281 (2018).Google Scholar
  33. 33.
    T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci. 28, 13587 (2017).Google Scholar
  34. 34.
    J. Sun, D.A. Mourey, D. Zhao, and T.N. Jackson, J. Electron. Mater. 37, 755 (2008).Google Scholar
  35. 35.
    T. Ohshima, R.K. Thareja, Y. Yamagata, T. Ikegami, K. Ebihara, and J. Narayan, Sci. Technol. Adv. Mater. 2, 517 (2001).Google Scholar
  36. 36.
    J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, and L. Vayssieres, Nanotechnology 17, 4995 (2006).Google Scholar
  37. 37.
    T.A. Vijayan, R. Chandramohan, S. Valanarasu, J. Thirumalai, and S.P. Subramanian, J. Mater. Sci. 43, 1776 (2008).Google Scholar
  38. 38.
    V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Sens. Actuators B 120, 551 (2007).Google Scholar
  39. 39.
    J. Yang, M. Gao, L. Yang, Y. Zhang, J. Lang, D. Wang, Y. Wang, H. Liu, and H. Fan, Appl. Surf. Sci. 225, 2646 (2008).Google Scholar
  40. 40.
    J.C. Sin, S.M. Lam, K.T. Lee, and A.R. Mohamed, Ceram. Int. 39, 5833 (2013).Google Scholar
  41. 41.
    H. Aleebrahim Dehkordi, K. Dastafkan, A. Moshaii, and A. Mokhtari, J. Mater. Sci. Mater. Electron. 26, 3134 (2015).Google Scholar
  42. 42.
    P. SundaraVenkatesh, V. Ramakrishnan, and K. Jeganathan, Physica B 481, 204 (2016).Google Scholar
  43. 43.
    J.J. Hassan, Z. Hassan, and H. Abu-Hassan, J. Alloys Compd. 509, 6711 (2011).Google Scholar
  44. 44.
    M. Cittadini, M. Sturaro, M. Guglielmi, A. Resmini, I.G. Tredici, U. Anselmi-Tamburini, P. Koshy, C.C. Sorrell, and A. Martucci, Sens. Actuators B 213, 493 (2015).Google Scholar
  45. 45.
    J. Janata, Principles of Chemical Sensors, 2nd ed. (Atlanta: Springer, 2009).Google Scholar
  46. 46.
    L.A. Patil, A.R. Bari, M.D. Shinde, and V. Deo, Sens. Actuators B Chem. 149, 79 (2010).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Hamed Aleebrahim Dehkordi
    • 1
    Email author
  • Ali Mokhtari
    • 1
    • 2
  • Kamran Dastafkan
    • 3
  • Vishtasb Soleimanian
    • 1
    • 2
  1. 1.Department of Physics, Faculty of ScienceShahrekord UniversityShahrekordIran
  2. 2.Nanotechnology Research CenterShahrekord UniversityShahrekordIran
  3. 3.Young Researchers and Elite Club, Ahvaz BranchIslamic Azad UniversityAhvazIran

Personalised recommendations