Advertisement

A Phenomenological Model of Unconventional Heat Transport Induced by Phase Transition in Cu2−xSe

  • D. VasilevskiyEmail author
  • R. A. Masut
  • S. Turenne
Topical Collection: International Conference on Thermoelectrics 2018
  • 18 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Research in copper selenide thermoelectric (TE) alloys has raised the possibility of a significant enhancement of the TE figure-of-merit ZT when the Seebeck coefficient is affected by a concurrent phase transformation. This ZT increase has also been related to a radical reduction of the thermal conductivity evaluated by transient laser flash thermal diffusivity measurements. In contrast, steady-state Harman-based measurements do not support a significant ZT increase only a modest one, because the thermal conductivity instead of decreasing goes through a sharp maximum as it approaches the critical phase transformation temperature of 407 K. The nature of this sharp increase of heat transfer has not been related to the well-known electronic or phononic contributions. Below the critical temperature, when the alloy is exposed to a steady-state temperature gradient, an additional heat transfer phenomenon takes place, induced by the ongoing gradual phase transition. We show that the enthalpy associated to the α to β and β to α phase transformations can lead to heat flow in the direction of the temperature gradient above and beyond conventional heat conduction. This unconventional heat transfer mechanism disappears when the temperature rises above the critical temperature where only a stable β phase remains. We propose a model of such a heat transport which leads to the sharp maximum of the related thermal conductivity. Numerical results obtained from the model compare favorably to the experimentally measured thermal conductivity.

Keywords

Figure-of-merit thermal conductivity phase transition thermoelectric measurements ZT-Scanner Harman method Cu2Se 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.L. Liu, X. Yuan, P. Lu, X. Shi, F.F. Xu, Y. He, Y.S. Tang, S.Q. Bai, W.Q. Zhang, L.D. Chen, Y. Lin, L. Shi, H. Lin, X.Y. Gao, X.M. Zhang, H. Chi, and C. Uher, J. Electron. Mater. 42, 2014 (2013).CrossRefGoogle Scholar
  2. 2.
    H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G.J. Snyder, Nat. Mater. Lett. 11, 422 (2012).CrossRefGoogle Scholar
  3. 3.
    H.L. Liu, X. Yuan, P. Lu, X. Shi, F.F. Xu, Y. He, Y.S. Tang, S.Q. Bai, W.Q. Zhang, L.D. Chen, Y. Lin, L. Shi, H. Lin, X.Y. Gao, X.M. Zhang, H. Chi, and C. Uher, Adv. Mater. 25, 6607 (2013).CrossRefGoogle Scholar
  4. 4.
    S.D. Kang, S. Danilkin, U. Aydemir, M. Avdeev, A. Studer, and G.J. Snyder, New J. Phys. 18, 013024 (2016).CrossRefGoogle Scholar
  5. 5.
    D.R. Brown, T. Day, K.A. Borup, S. Christensen, B.B. Iversen, and G.J. Snyder, APL Mater. 1, 052107 (2013).CrossRefGoogle Scholar
  6. 6.
    H. Liu, X. Shi, M. Kirkham, H. Wang, Q. Li, C. Uher, W. Zhang, and L. Chen, Mater. Lett. 93, 121 (2013).CrossRefGoogle Scholar
  7. 7.
    A.A. Sirusi, S. Ballikaya, C. Uher, and J.H. Ross, J. Phys. Chem. C119, 20293 (2015).Google Scholar
  8. 8.
    D.R. Brown, R. Heijl, K.A. Borup, B.B. Iversen, A. Palmqvist, and G.J. Snyder, Phys. Status Solidi RRL 10, 618 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Vasilevskiy, M.K. Keshawarz, J.-M. Simard, R.A. Masut, S. Turenne, and G.J. Snyder, J. Electron. Mater. 47, 3314 (2018).CrossRefGoogle Scholar
  10. 10.
    D. Vasilevskiy, J.-M. Simard, R.A. Masut, and S. Turenne, J. Electron. Mater. 44, 1733 (2015).CrossRefGoogle Scholar
  11. 11.
    D. Vasilevskiy, J.-M. Simard, R.A. Masut, and S. Turenne, J. Electron. Mater. 45, 1540 (2016).CrossRefGoogle Scholar
  12. 12.
    D. Vasilevskiy, J.-M. Simard, R.A. Masut, and S. Turenne, J. Electron. Mater. 46, 1540 (2017).CrossRefGoogle Scholar
  13. 13.
    S.M. Bhandari and D.M. Row, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995), p. 43.Google Scholar
  14. 14.
    G.S. Kumar, G. Prasad, and R.O. Pohl, J. Mat. Sc. 28, 4261 (1993).CrossRefGoogle Scholar
  15. 15.
    B. Ramachandran, R.C. Tang, P.C. Chang, Y.K. Kuo, C. Chien, and S.K. Wu, J. Appl. Phys. 113, 203702 (2013).CrossRefGoogle Scholar
  16. 16.
    T.C. Harman, J. Appl. Phys. 29, 1373 (1958).CrossRefGoogle Scholar
  17. 17.
    T.C. Harman, J.H. Cahn, and M.J. Logan, J. Appl. Phys. 30, 1351 (1959).CrossRefGoogle Scholar
  18. 18.
    M. Avrami, J Chem Phys. 7, 1103 (1939).CrossRefGoogle Scholar
  19. 19.
    H.E. Kissinger, Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
  20. 20.
    S.G. Maymuko, M.M. Pavlyuchenko, and I.I. Pokrovskii, Dokl. Akad. Nauk. Beloruss. SSR 16, 521 (1972).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.École Polytechnique de MontréalMontrealCanada
  2. 2.TEMTE Inc.MontrealCanada

Personalised recommendations