Advertisement

Structure and Magnetic Properties of Nanocrystalline MnAl-C Prepared by Solid-State Reaction and High-Pressure Compaction

  • Hui-Dong Qian
  • Ping-Zhan Si
  • Jihoon Park
  • Kyung Mox ChoEmail author
  • Chul-Jin ChoiEmail author
5th International Conference of Asian Union of Magnetics Societies
  • 11 Downloads
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)
  2. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)

Abstract

The ferromagnetic MnAl-C powders were prepared by using a one-step solid-state reaction method starting from Mn micro-/nano-particles and Al/C micropowders. The bulk MnAl-C with enhanced coercivity was prepared by high-pressure compaction of these MnAl-C powders. The grain size of the τ-phase was significantly reduced during high-pressure compaction, which may also result in a decomposition of the τ-MnAl. Carbon element stabilizes the τ-phase under both ambient and high pressures. The annealing temperature and time intervals are crucial for the preparation of high purity τ-phase samples. The MnAl-C with smaller particle size were produced from Mn nanoparticles. In comparison with the samples prepared from Mn micropowders, the product prepared from Mn nanoparticles shows lower purity, owing to the surface oxidation of the precursor nanoparticles. After high pressure compaction, the coercivities of the bulk MnAl and MnAl-C were increased from 0.05 T and 0.08 T to 0.39 T and 0.22 T, respectively. The room temperature magnetization of the MnAl-C sample at 4 T reached up to 95 Am2/kg.

Keywords

MnAl solid-state reaction MnAlC magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Future Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016M3D1A1027835).

References

  1. 1.
    Q. Zeng, I. Baker, J.B. Cui, and Z.C. Yan, J. Magn. Magn. Mater. 308, 214 (2007).  https://doi.org/10.1016/j.jmmm.2006.05.032.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, and D. Sellmyer, Acta Mater. 158, 118 (2018).  https://doi.org/10.1016/j.actamat.2018.07.049.CrossRefGoogle Scholar
  4. 4.
    G. Hindrichs, Z. Anorg. Chem. 59, 414 (1908).  https://doi.org/10.1002/zaac.19080590136.CrossRefGoogle Scholar
  5. 5.
    H. Kono, J. Phys. Soc. Jpn. 13, 1444 (1958).  https://doi.org/10.1143/JPSJ.13.1444.CrossRefGoogle Scholar
  6. 6.
    A.J.J. Koch, P. Hokkeling, M.G.V.D. Steeg, and K.J.D.E. Vos, J. Appl. Phys. 31, 75S (1960).  https://doi.org/10.1063/1.1984610.CrossRefGoogle Scholar
  7. 7.
    R.H. Willens, IEEE Trans. Magn. 16, 5 (1980).  https://doi.org/10.1109/TMAG.1980.1060667.CrossRefGoogle Scholar
  8. 8.
    J.H. Huang and P.C. Kuo, Mater. Sci. Eng. B 20, 292 (1993).  https://doi.org/10.1016/0956-716X(93)90550-C.CrossRefGoogle Scholar
  9. 9.
    Y. Sakka, M. Nakamura, and K. Hoshimoto, J. Mater. Sci. 24, 4331 (1989).  https://doi.org/10.1007/BF00544507.CrossRefGoogle Scholar
  10. 10.
    J. Thielsch, F. Bittner, and T.G. Woodcock, J. Magn. Magn. Mater. 426, 25 (2017).  https://doi.org/10.1016/j.jmmm.2016.11.045.CrossRefGoogle Scholar
  11. 11.
    P.Z. Si, H.D. Qian, C.J. Choi, J.H. Park, and H.L. Ge, J. Magn. Magn. Mater. 451, 540 (2018).  https://doi.org/10.1016/j.jmmm.2017.11.094.CrossRefGoogle Scholar
  12. 12.
    R. Madugundo, O. Koylu-Alkan, and G.C. Hadjipanayis, AIP Adv. 6, 056009 (2016).  https://doi.org/10.1063/1.4943242.CrossRefGoogle Scholar
  13. 13.
    W. Lu, J.C. Niu, T.L. Wang, K.D. Xia, Z. Xiang, Y.M. Song, H. Zhang, S. Yoshimura, and H. Saito, J. Alloys Compd. 675, 163 (2016).  https://doi.org/10.1016/j.jallcom.2016.03.098.CrossRefGoogle Scholar
  14. 14.
    T. Ohtani, N. Kato, S. Kojima, Y. Sakamoto, I. Konno, M. Tsukahara, and T. Kubo, IEEE Trans. Mag. 13, 1328 (1977).  https://doi.org/10.1109/TMAG.1977.1059574.CrossRefGoogle Scholar
  15. 15.
    P.Z. Si, E. Brück, Z.D. Zhang, O. Tegus, W.S. Zhang, K.H.J. Buschow, and J.C.P. Klaasse, Mater. Res. Bull. 40, 29 (2005).  https://doi.org/10.1016/j.materresbull.2004.09.010.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Powder & Ceramic DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.School of Materials Science and EngineeringPusan National UniversityBusanRepublic of Korea

Personalised recommendations