Journal of Electronic Materials

, Volume 48, Issue 2, pp 1174–1183 | Cite as

Effect of Annealing on the Surface Morphology, Optical and and Structural Properties of Nanodimensional Tungsten Oxide Prepared by Coprecipitation Technique

  • Jagjeevan Ram
  • R. G. Singh
  • Rashi Gupta
  • Vikas Kumar
  • Fouran Singh
  • Rajesh KumarEmail author


Tungsten oxide (WO3) nanoparticles with monoclinic structure have been synthesized by using an inexpensive coprecipitation process. The obtained nanoparticles were annealed at 400°C, 500°C, 600°C, 700°C, 800°C, and 900°C for 1 h under the same physical conditions. The morphology, structure, and optical properties of the synthesized nanoparticles were studied by x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet–visible (UV–Vis) spectrophotometry, and Raman spectroscopy. The XRD results confirmed that the synthesized nanomaterial was crystalline in nature with monoclinic phase. The crystallite size varied from 14 nm to 87 nm when changing the annealing temperature. Williamson–Hall analysis was used to investigate the change in lattice strain and crystallite size. The optical performance was investigated by using UV–visible spectroscopy. The bandgap of the prepared nanomaterials varied from 2.51 eV to 3.77 eV with the annealing temperature, due to the variation of the effect of oxygen vacancies on the electronic band structure. SEM revealed formation of uniform and irregular-sized nanoparticles. HRTEM analysis revealed that the nanoparticles grew along the [002] plane with d-spacing of 0.39 nm for the material annealed at 500°C and along the [200] plane with spacing of 0.36 nm when annealed at 800°C. The crystalline nature of the synthesized nanomaterial was confirmed by uniform and clear fringes obtained in TEM micrographs. The correlation between the peak position and width of the key band at 806 cm−1 in Raman spectroscopy band is discussed. These enhancements in the properties of WO3 nanomaterial make it an efficient material for many potential applications, e.g., in photocatalysis, electro- and photochromic devices, etc.


XRD SEM HRTEM UV–Vis spectroscopy Raman spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Torvela, T. Jaakola, A. Uusimäki, and S. Leppävuori, J. Electron. Mater. 15, 7 (1986).CrossRefGoogle Scholar
  2. 2.
    M. Andrzejczuk, A. Roguska, M. Pisarek, M. Hołdyński, M. Lewandowska, and K.J. Kurzydłowski, Micron 95, 35 (2017).CrossRefGoogle Scholar
  3. 3.
    X. Deng, Z. Chen, and Y. Cao, Mater. Today Chem. 9, 114 (2018).CrossRefGoogle Scholar
  4. 4.
    A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, and E. Jabbari, Nano-Struct. Nano-Objects 14, 19 (2018).CrossRefGoogle Scholar
  5. 5.
    X. Zhou, X. Cheng, Y. Zhu, A.A. Elzatahry, A. Alghamdi, Y. Deng, and D. Zhao, Chin. Chem. Lett. 29, 405 (2018).CrossRefGoogle Scholar
  6. 6.
    M. Gillet, K. Mašek, and E. Gillet, Surf. Sci. 383, 566 (2004).Google Scholar
  7. 7.
    J. Kim, C.W. Lee, and W. Choi, Environ. Sci. Technol. 44, 6844 (2010).Google Scholar
  8. 8.
    A.J. More, R.S. Patil, D.S. Dalavi, M.P. Suryawanshi, V.V. Burungale, J.H. Kim, and P.S. Patil, J. Electron. Mater. 46, 974 (2017).CrossRefGoogle Scholar
  9. 9.
    S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, and E.W. McFarland, Adv. Mater. 15, 1269 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, and H.J. Gao, Appl. Phys. Lett. 86, 141901 (2005).CrossRefGoogle Scholar
  11. 11.
    C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, J. Am. Chem. Soc. 123, 10639 (2001).CrossRefGoogle Scholar
  12. 12.
    R. Huang, Y. Shen, L. Zhao, and M. Yan, Adv. Powder Technol. 23, 211 (2012).CrossRefGoogle Scholar
  13. 13.
    Y. Djaoued, S. Balaji, and R. Brüning, J. Nanomater. 2012, 1 (2012).CrossRefGoogle Scholar
  14. 14.
    D. Sánchez Martínez, A. Martínez-De La Cruz, and E. López Cuéllar, Appl. Catal. A Gen. 398, 179 (2011).CrossRefGoogle Scholar
  15. 15.
    A.H.Y. Hendi, M.F. Al-Kuhaili, S.M.A. Durrani, M.M. Faiz, A. Ul-Hamid, A. Qurashi, and I. Khan, Mater. Res. Bull. 87, 148 (2017).CrossRefGoogle Scholar
  16. 16.
    C.H. Lu, M.H. Hon, and I.C. Leu, J. Electron. Mater. 46, 2080 (2017).CrossRefGoogle Scholar
  17. 17.
    W.J. Lee, Y.K. Fang, J.J. Ho, W.T. Hsieh, S.F. Ting, D. Huang, and F.C. Ho, J. Electron. Mater. 29, 183 (2000).CrossRefGoogle Scholar
  18. 18.
    H. Zhang, S. Wang, Y. Wang, J. Yang, X. Gao, and L. Wang, Phys. Chem. Chem. Phys. 16, 10830 (2014).CrossRefGoogle Scholar
  19. 19.
    S.K. Deb, Sol. Energy Mater. Sol. Cells 92, 245 (2008).CrossRefGoogle Scholar
  20. 20.
    A. Ghosh, D.J. Late, L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao, J. Exp. Nanosci. 4, 313 (2009).CrossRefGoogle Scholar
  21. 21.
    A.J.T. Naik, C. Bowman, N. Panjwani, M.E.A. Warwick, and R. Binions, Thin Solid Films 544, 452 (2013).CrossRefGoogle Scholar
  22. 22.
    M. Takács and A.E. Pap, Procedia Eng. 168, 289 (2016).CrossRefGoogle Scholar
  23. 23.
    L.C. Klein, Mater. Manuf. Process. 9, 1007 (1994).CrossRefGoogle Scholar
  24. 24.
    P. Limnonthakul, W. Luangtip, C. Puttharugsa, I. Lutchanont, C. Chananonnawathorn, P. Eiamchai, S. Limwichean, V. Pattantsetakul, and M. Horprathum, Mater. Today Proc. 4, 6218 (2017).CrossRefGoogle Scholar
  25. 25.
    X.T. Su, F. Xiao, J.L. Lin, J.K. Jian, Y.N. Li, Q.J. Sun, and J.D. Wang, Mater. Charact. 61, 831 (2010).CrossRefGoogle Scholar
  26. 26.
    H. Zhang, Y. Li, G. Duan, G. Liu, and W. Cai, CrystEngComm 16, 2491 (2014).CrossRefGoogle Scholar
  27. 27.
    Y. Wu, Y. Wei, Q. Guo, H. Xu, L. Gu, F. Huang, D. Luo, Y. Huang, L. Fan, and J. Wu, Sol. Energy Mater. Sol. Cells 176, 230 (2018).CrossRefGoogle Scholar
  28. 28.
    A.A. Ashkarran, A. Iraji zad, M.M. Ahadian, and S.A. Mahdavi Ardakani, Nanotechnology 19, 195709 (2008).CrossRefGoogle Scholar
  29. 29.
    W. Merchan-Merchan, M.F. Farahani, and Z. Moorhead-Rosenberg, Micron 57, 23 (2014).CrossRefGoogle Scholar
  30. 30.
    Y. Sun, C.J. Murphy, K.R. Reyes-Gil, E.A. Reyes-Garcia, J.M. Thornton, N.A. Morris, and D. Raftery, Int. J. Hydrogen Energy 34, 8476 (2009).CrossRefGoogle Scholar
  31. 31.
    D. Hidayat, A. Purwanto, W.N. Wang, and K. Okuyama, Mater. Res. Bull. 45, 165 (2010).CrossRefGoogle Scholar
  32. 32.
    S. Deki, A.B. Béléké, Y. Kotani, and M. Mizuhata, Mater. Chem. Phys. 123, 614 (2010).CrossRefGoogle Scholar
  33. 33.
    X.H. Zhu and Q.M. Hang, Micron 44, 21 (2013).CrossRefGoogle Scholar
  34. 34.
    X. Zhang, F. Shi, J. Niu, Y. Jiang, and Z. Wang, J. Mater. Chem. 18, 621 (2008).CrossRefGoogle Scholar
  35. 35.
    E. Amani, K. Khojier, and S. Zoriasatain, Int. J. Hydrogen Energy 42, 29620 (2017).CrossRefGoogle Scholar
  36. 36.
    S.-H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, and A.C. Dillon, Adv. Mater. 18, 763 (2006).CrossRefGoogle Scholar
  37. 37.
    S.I. Boyadjiev, V. Georgieva, N. Stefan, G.E. Stan, N. Mihailescu, A. Visan, I.N. Mihailescu, C. Besleaga, and I.M. Szilágyi, Appl. Surf. Sci. 417, 218 (2017).CrossRefGoogle Scholar
  38. 38.
    W.L. Kwong, A. Nakaruk, P. Koshy, and C.C. Sorrell, Thin Solid Films 544, 191 (2013).CrossRefGoogle Scholar
  39. 39.
    J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, Adv. Condens. Matter Phys. 1, 2013 (2013).Google Scholar
  40. 40.
    V. Kumar, M.K. Jaiswal, R. Gupta, J. Ram, I. Sulania, S. Ojha, X. Sun, N. Koratkar, and R. Kumar, J. Mater. Sci. Mater. Electron. 29, 13328 (2018).CrossRefGoogle Scholar
  41. 41.
    R. Gupta, R. Kumar, R.P. Chauhan, and S.K. Chakarvarti, Vacuum 148, 239 (2018).CrossRefGoogle Scholar
  42. 42.
    P.M. Kibasomba, S. Dhlamini, M. Maaza, C.P. Liu, M.M. Rashad, D.A. Rayan, and B.W. Mwakikunga, Results Phys. 9, 628 (2018).CrossRefGoogle Scholar
  43. 43.
    S. Dadras and M. Davoudiniya, Phys. C Supercond. Appl. 548, 116 (2018).CrossRefGoogle Scholar
  44. 44.
    A. Kalita and M.P.C. Kalita, Phys. E Low Dimens. Syst. Nanostruct. 92, 36 (2017).CrossRefGoogle Scholar
  45. 45.
    R. Gupta, R.P. Chauhan, S.K. Chakarvarti, M.K. Jaiswal, D. Ghoshal, S. Basu, S. Suresh, S.F. Bartolucci, N. Koratkar, and R. Kumar, J. Mater. Sci. Mater. Electron. 29, 19013 (2018).CrossRefGoogle Scholar
  46. 46.
    C. Kulsi, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly, and D. Banerjee, Appl. Surf. Sci. 392, 540 (2017).CrossRefGoogle Scholar
  47. 47.
    M. Mitra, C. Kulsi, K. Kargupta, S. Ganguly, and D. Banerjee, J. Appl. Polym. Sci. 5, 46887 (2018).CrossRefGoogle Scholar
  48. 48.
    S. Dutta, S. Chattopadhyay, M. Sutradhar, A. Sarkar, M. Chakrabarti, D. Sanyal, and D. Jana, J. Phys. Condens. Matter 19, 236218 (2007).CrossRefGoogle Scholar
  49. 49.
    C. Kulsi, K. Kargupta, and D. Banerjee, AIP Conf. Proc. 1724, 020028 (2016).CrossRefGoogle Scholar
  50. 50.
    X. Xia, D. Chao, X. Qi, Q. Xiong, Y. Zhang, J. Tu, H. Zhang, and H.J. Fan, Nano Lett. 13, 4562 (2013).CrossRefGoogle Scholar
  51. 51.
    G. Gu, B. Zheng, W.Q. Han, S. Roth, and J. Liu, Nano Lett. 2, 849 (2002).CrossRefGoogle Scholar
  52. 52.
    D. Chen and Y. Sugahara, Chem. Mater. 19, 1808 (2007).CrossRefGoogle Scholar
  53. 53.
    H. Wang, X. Quan, Y. Zhang, and S. Chen, Nanotechnology 19, 065704 (2008).CrossRefGoogle Scholar
  54. 54.
    M.A.M. Khan, S. Kumar, T. Ahamad, and A.N. Alhazaa, J. Alloys Compd. 743, 485 (2018).CrossRefGoogle Scholar
  55. 55.
    V. Chauhan, T. Gupta, N. Koratkar, and R. Kumar, Mater. Sci. Semicond. Process. 88, 262 (2018).CrossRefGoogle Scholar
  56. 56.
    G. Xin, W. Guo, and T. Ma, Appl. Surf. Sci. 256, 165 (2009).CrossRefGoogle Scholar
  57. 57.
    A. Fakhri and S. Behrouz, Sol. Energy 112, 163 (2015).CrossRefGoogle Scholar
  58. 58.
    M.A. Majeed Khan, S. Kumar, M. Naziruddin Khan, M. Ahamed, and A.S. Al Dwayyan, J. Lumin. 155, 275 (2014).CrossRefGoogle Scholar
  59. 59.
    P.P. González-Borrero, F. Sato, A.N. Medina, M.L. Baesso, A.C. Bento, G. Baldissera, C. Persson, G.A. Niklasson, C.G. Granqvist, and A. Ferreira da Silva, Appl. Phys. Lett. 96, 061909 (2010).CrossRefGoogle Scholar
  60. 60.
    C. Yang, Q. Zhu, T. Lei, H. Li, and C. Xie, J. Mater. Chem. C 2, 9467 (2014).CrossRefGoogle Scholar
  61. 61.
    S. Gupta, B.C. Yadav, P.K. Dwivedi, and B. Das, Mater. Res. Bull. 48, 3315 (2013).CrossRefGoogle Scholar
  62. 62.
    J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He, and B.H. Zhao, J. Appl. Phys. 101, 083705 (2007).CrossRefGoogle Scholar
  63. 63.
    M.P.S. Rana, F. Singh, S. Negi, S.K. Gautam, R.G. Singh, and R.C. Ramola, Ceram. Int. 42, 5932 (2016).CrossRefGoogle Scholar
  64. 64.
    S.K. Gautam, F. Singh, I. Sulania, R.G. Singh, P.K. Kulriya, and E. Pippel, J. Appl. Phys. 115, 143504 (2014).CrossRefGoogle Scholar
  65. 65.
    D. Bersani, P.P. Lottici, and X.Z. Ding, Appl. Phys. Lett. 72, 73–75 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Jagjeevan Ram
    • 1
  • R. G. Singh
    • 2
  • Rashi Gupta
    • 1
  • Vikas Kumar
    • 1
  • Fouran Singh
    • 3
  • Rajesh Kumar
    • 1
    Email author
  1. 1.University School of Basic and Applied ScienceGuru Gobind Singh Indraprastha UniversityNew DelhiIndia
  2. 2.Department of Physics, Bhagini Nivedita CollegeUniversity of DelhiNew DelhiIndia
  3. 3.Materials Sciences GroupInter University Accelerator CentreNew DelhiIndia

Personalised recommendations