Advertisement

Influencing Optical and Magnetic Properties of NiCr2O4 by the Incorporation of Fe(III) for Cr(III) Following Epoxide Gel Synthesis

  • Vikash Kumar Tripathi
  • Rajamani Nagarajan
Article
  • 1 Downloads

Abstract

With the objective of modifying the optical and magnetic properties of the spinel NiCr2O4, incorporation of 50 mol.% of Fe3+ for Cr3+ has been attempted following an epoxide-mediated gel synthesis. From the Le Bail refinement of powder x-ray diffraction patterns of xerogels after calcination at 1000°C for 2 h in Fd-3 m space group, the lattice parameter of resultant spinels showed a marginal increase from 8.3117 (21) for NiCr2O4 to 8.3177 (26) Å for NiCrFeO4. The square morphology of the crystallites was observed in scanning electron microscopic images, and the energy-dispersive spectroscopy results confirmed the uniform presence of Ni, Cr and Fe in these samples. Lattice fringes in high-resolution transmission electron microscopic images could be related to the cubic spinel structure. The optical band gap was found to decrease from 1.68 for NiCr2O4 to 1.41 eV for NiCrFeO4. Substitution of iron for chromium was found to reduce its catalytic efficiency for photo-degradation of aqueous rhodamine-6G (Rh-6G) dye solution under UV–visible radiation.

Keywords

Spinels sol–gel processes calcination x-ray methods magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    C.N.R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry, 2nd ed. (Cambridge: Cambridge University Press, 2010).Google Scholar
  2. 2.
    D.C. UaCearnaigh, R. Baghi, and L.J. Hope-Weeks, RSC Adv. 6, 48212 (2016).CrossRefGoogle Scholar
  3. 3.
    V.K. Tripathi and R. Nagarajan, Adv. Powder Technol. 27, 1251 (2016).CrossRefGoogle Scholar
  4. 4.
    V.K. Tripathi and R. Nagarajan, J. Am. Ceram. Soc. 99, 814 (2016).CrossRefGoogle Scholar
  5. 5.
    S.S. Manoharan and K.C. Patil, J. Am. Ceram. Soc. 75, 1012 (1992).CrossRefGoogle Scholar
  6. 6.
    M.K. Anupama, N. Srinatha, S. Matteppanavar, B. Angadi, B. Sahoo, and B. Rudraswamy, Ceram. Int. 44, 4946 (2018).CrossRefGoogle Scholar
  7. 7.
    A.V. Anupama, V. Kumaran, and B. Sahoo, Powder Technol. 338, 190 (2018).CrossRefGoogle Scholar
  8. 8.
    A.V. Anupama, V. Kumaran, and B. Sahoo, Adv. Powder Technol. 29, 2188–2193 (2018).CrossRefGoogle Scholar
  9. 9.
    S.K. Date, P.A. Joy, P.S. AnilKumar, B. Sahoo, and W. Keune, Phys. Status Solidi C 1, 3495 (2004).CrossRefGoogle Scholar
  10. 10.
    M. Ptak, M. Maczka, A. Gągor, A. Pikul, L. Macalik, and J. Hanuza, J. Solid State Chem. 201, 270 (2013).CrossRefGoogle Scholar
  11. 11.
    E. Grazenaite, J. Pinkas, A. Beganskiene, and A. Kareiva, Ceram. Int. 42, 9402 (2016).CrossRefGoogle Scholar
  12. 12.
    W.J. Tseng, C.K. Hsu, C. Chi, and K.H. Teng, Mater. Lett. 52, 313 (2002).CrossRefGoogle Scholar
  13. 13.
    N.H. Li, Y. Chen, C.Y. Hu, C.H. Hesieh, and S.L. Lo, J. Hazard. Mater. 198, 356 (2011).CrossRefGoogle Scholar
  14. 14.
    M. Stefanescu, M. Barbu, P. Barvinschi, and O. Stefanescu, J. Therm. Anal. Calorim. 111, 1121 (2013).CrossRefGoogle Scholar
  15. 15.
    R.K. Singh, A. Yadav, A. Narayan, A.K. Singh, L. Verma, and R.K. Verma, J. Therm. Anal. Calorim. 107, 197 (2012).CrossRefGoogle Scholar
  16. 16.
    J. Wang, G. Yang, L. Cheng, E.W. Shin, and Y. Men, Catal. Sci. Technol. 5, 4594 (2015).Google Scholar
  17. 17.
    F. Beshkar, S.Z. Ajabshir, and M.S. Niasari, Chem. Eng. J. 279, 605 (2015).CrossRefGoogle Scholar
  18. 18.
    I. Matulkova, P. Holec, B. Pacakova, S. Kubickova, A. Mantlikova, J. Plocekc, I. Nemec, D. Niznanskya, and J. Vejpravova, Mater. Sci. Eng. B 195, 66 (2015).CrossRefGoogle Scholar
  19. 19.
    S.A. Bakar, N. Soltani, W.M.M. Yunus, E. Saion, and A. Bahrami, Solid State Commun. 192, 15 (2014).CrossRefGoogle Scholar
  20. 20.
    L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).CrossRefGoogle Scholar
  21. 21.
    A.E. Gash, T.M. Tillotson, J.H. Satcher Jr, L.W. Hrubesh, and R.L. Simpson, J. Non-Cryst. Solids. 285, 22 (2001).CrossRefGoogle Scholar
  22. 22.
    V.K. Tripathi and R. Nagarajan, Dalton Trans. 45, 11191 (2016).CrossRefGoogle Scholar
  23. 23.
    Z. Wang, S.K. Saxena, and P. Lazor, J. Phys. Chem. Solids 64, 425 (2003).CrossRefGoogle Scholar
  24. 24.
    V. Rathod, A.V. Anupama, R. VijayaKumar, V.M. Jali, and B. Sahoo, Vib. Spectrosc. 92, 267 (2017).CrossRefGoogle Scholar
  25. 25.
    I.S. Lyubutin, C.-R. Lin, S.S. Starchikov, A.O. Baskakov, N.E. Gervits, K.O. Funtov, Y.-T. Tseng, W.-J. Lee, K.-Y. Shih, and J.-S. Lee, Inorg. Chem. 56, 12469 (2017).CrossRefGoogle Scholar
  26. 26.
    N.V. Kuleshov, V.G. Shcherbitsky, V.P. Mikhailov, S. Kiick, J. Koetke, K. Petermann, and G. Huberb, J. Lumin. 71, 265 (1997).CrossRefGoogle Scholar
  27. 27.
    H.Z. Qiang, L.X. Quing, H.D. Feng, G. Hong, and L.J. Xiao, Key Eng. Mater. 512, 86 (2012).Google Scholar
  28. 28.
    L. Kumar, P. Kumar, V. Kuncser, S. Greculeasa, B. Sahoo, and M. Kar, Mater. Chem. Phys. 211, 54 (2018).CrossRefGoogle Scholar
  29. 29.
    J. Barman, T. Bora, and S. Ravi, J. Magn. Magn. Mater. 385, 93 (2015).CrossRefGoogle Scholar
  30. 30.
    J. Barman and S. Ravi, Solid State Commun. 201, 59 (2015).CrossRefGoogle Scholar
  31. 31.
    T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci. Mater. Electron. 28, 13587 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Materials Chemistry Group, Department of ChemistryUniversity of DelhiNew DelhiIndia

Personalised recommendations