Journal of Electronic Materials

, Volume 48, Issue 2, pp 1106–1115 | Cite as

Improvement of the Bond Strength of Ag Sinter-Joining on Electroless Ni/Au Plated Substrate by a One-Step Preheating Treatment

  • Chuantong ChenEmail author
  • Zheng Zhang
  • Chanyang Choe
  • Dongjin Kim
  • Seungjun Noh
  • Toru Sugahara
  • Katsuaki Suganuma


Ag sinter-joining technology has become one of the leading candidates to replace conventional high-Pb soldering technology for wide bandgap (WBG) power modules. In many cases of die-attach applications, Ni/Au plating is an inevitable choice for both die-back faces and substrates. In this study, a preheating treatment of the Ni/Au plating was utilized to increase the bond strength of the Ag sinter-joined structure of Cu-to-Cu to the electroless Ni/Au plating. Our research determined that the microstructure of the Ni/Au plating can be modified by performing an optimized preheating treatment. The thickness of the Ni underlayer was fixed at 5 μm, and the Au was plated with two different thicknesses of 0.1 μm and 0.3 μm. Ni/Au plated Cu substrates and Cu chips were preheated at various temperatures from 150°C to 350°C and then bonded with hybrid Ag particles at a low temperature of 250°C with a pressureless sintering process. Without the preheating treatment, average shear strength was 14.2 MPa (as plated Au), however, after a 1 h preheating treatment at 250°C, the interface microstructure change resulted in a 26.3 MPa shear strength, an increase of about 85%. The same improvement effect was also confirmed for the Au plating layer with a thickness of 0.3 μm. Energy dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) analysis indicated that the preheating treatment influences the grain structure of the Au plating layer and removes defects, resulting in an increase of bond strength for the Au plated joint structure.


Au plating sinter joining Ag particles bonding strength grain structure WBG power modules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the JST Advanced Low Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology” (Grant No. JPMJAL1610). The author is thankful to the Network Joint Research Centre for Materials and Devices, Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials, also thanks to the Daicel Corporation, DENSO Corporation, and C. Uyemura & Co., Ltd for help in the experiments.


  1. 1.
    R. Khazaka, L. Mendizabal, D. Henry, and R. Hanna, IEEE. Trans. Power Electron. 30, 2456 (2015).CrossRefGoogle Scholar
  2. 2.
    C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, and C. Raynaud, Mater. Sci. Eng. 176, 283 (2011).CrossRefGoogle Scholar
  3. 3.
    C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Suganuma, T. Iwashige, K. Sugiura, and K. Tsuruta, J. Electron. Mater. 46, 1576 (2017).CrossRefGoogle Scholar
  4. 4.
    C. Pei, C. Chen, G. Fu, and K. Suganuma, J. Electron. Mater. 47, 811 (2018).CrossRefGoogle Scholar
  5. 5.
    K. Suganuma, S.J. Kim, and K.S. Kim, J. Minerals. Metals. Mater. Soc. 61, 64 (2009).CrossRefGoogle Scholar
  6. 6.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.-S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).CrossRefGoogle Scholar
  7. 7.
    C. Chen, S. Nagao, K. Suganuma, J. Jiu, T. Sugahara, H. Zhang, T. Iwashige, K. Sugiura, and K. Tsuruta, Acta Mater. 129, 41 (2017).CrossRefGoogle Scholar
  8. 8.
    C. Chen, S. Nagao, K. Suganuma, J. Jiu, H. Zhang, T. Sugahara, T. Iwashige, K. Sugiura, and K. Tsuruta, Appl. Phys. Lett. 109, 093503 (2016).CrossRefGoogle Scholar
  9. 9.
    K. Siow, J. Electron. Mater. 43, 947 (2014).CrossRefGoogle Scholar
  10. 10.
    P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, and Y.N. Zhou, ACS Appl. Mater. Interfaces 7, 12597 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Zhang, W. Li, Y. Gao, H. Zhang, J. Jiu, and K. Suganuma, J. Electron. Mater. 46, 5201 (2017).CrossRefGoogle Scholar
  12. 12.
    H. Zhang, C. Chen, J. Jiu, S. Nagao, and K. Suganuma, J. Mater. Sci. Mater. Electron. 29, 8854 (2018).CrossRefGoogle Scholar
  13. 13.
    C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, and K. Tsuruta, J. Mater. Sci.: Mater. Electron. 29, 1785 (2018).Google Scholar
  14. 14.
    T. Fan, H. Zhang, P. Shang, C. Li, C. Chen, J. Wang, Z. Liu, H. Zhang, and K. Suganuma, J. Alloys Compd. 731, 1280 (2018).CrossRefGoogle Scholar
  15. 15.
    N. Okuya, H. Minami, H. Kurashige, S. Murahara, S. Suzuki, and T. Tanaka, Dent. Mater. J. 29, 177 (2010).CrossRefGoogle Scholar
  16. 16.
    Q. Xu, Y. Mei, X. Li, and G.Q. Lu, J. Alloys Compd. 675, 317 (2016).CrossRefGoogle Scholar
  17. 17.
    C. Chen, Z. Zhang, S. Nagao, K. Suganuma, T. Iwashige, K. Sugiura, and K. Tsuruta, IEEE ICEP-IAAC (2018)Google Scholar
  18. 18.
    S.A. Paknejad, G. Dumas, G. West, G. Lewis, and S.H. Mannan, J. Alloys Compd. 617, 994 (2014).CrossRefGoogle Scholar
  19. 19.
    S.T. Chua and K.S. Siow, J. Alloys Compd. 687, 486 (2016).CrossRefGoogle Scholar
  20. 20.
    S. Kobayashi, R. Fukasawa, and T. Watanabe, Mater. Sci. Forum 706–709, 2880 (2012).CrossRefGoogle Scholar
  21. 21.
    X. Zhang, X. Song, and D. Zhang, Chin. Phys. B 19, 086802 (2010).CrossRefGoogle Scholar
  22. 22.
    B.C. Charboneau, F. Wang, J.D. van Wyk, D. Boroyevich, Z. Liang, E.P. Scott, and C.W. Tipton, IEEE Trans. Ind. Appl. 44, 1645 (2008).CrossRefGoogle Scholar
  23. 23.
    Y. Zhong, J. Meng, P. Ning, and X. Wen, IEEE. ITEC Asia-Pacific, 1 (2014).Google Scholar
  24. 24.
    H. Zhang and S.S. Ang, J. Microelectron. Electron. Packag. 13, 23 (2016).CrossRefGoogle Scholar
  25. 25.
    M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, and T. Komatsu, Appl. Phys. A Mater. Sci. Process. 93, 467 (2008).CrossRefGoogle Scholar
  26. 26.
    M.H. Roh, H. Nishikawa, S. Tsutsumi, N. Nishiwaki, K. Ito, K. Ishikawa, A. Katsuya, N. Kamada, and M. Saito, J. Mater. Sci. Mater. Electron. 28, 7292 (2017).CrossRefGoogle Scholar
  27. 27.
    M.H. Roh, H. Nishikawa, S. Tsutsumi, N. Nishiwaki, K. Ito, K. Ishikawa, A. Katsuya, N. Kamaka, and M. Saito, Mater. Trans. 57, 1209 (2016).CrossRefGoogle Scholar
  28. 28.
    M. El-Kemary, N. Nagy, and I. El-Mehasseb, Mat. Sci. Semiconduct. Proc. 16, 1747 (2013).CrossRefGoogle Scholar
  29. 29.
    U. Kwon, B.G. Kim, D.C. Nguyen, J.-H. Park, N.Y. Ha, S.-J. Kim, S.H. Ko, S. Lee, D. Lee, and H.J. Park, Sci. Rep. 6, 30759 (2016).CrossRefGoogle Scholar
  30. 30.
    A.G. Blachman, Metall. Trans. 236, 699 (1971).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Chuantong Chen
    • 1
    Email author
  • Zheng Zhang
    • 1
    • 2
  • Chanyang Choe
    • 1
    • 2
  • Dongjin Kim
    • 1
    • 2
  • Seungjun Noh
    • 1
    • 2
  • Toru Sugahara
    • 1
  • Katsuaki Suganuma
    • 1
  1. 1.Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan
  2. 2.Department of Adaptive Machine Systems, Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations