Advertisement

Inverted Polymer Solar Cells with a Reduced Graphene Oxide/Poly (3,4-Ethylene Dioxythiophene):Poly(4-Styrene Sulfonate) (PEDOT:PSS) Hole Transport Layer

  • Meryem Goumri
  • Bruno Lucas
  • Bernard Ratier
  • Mimouna Baitoul
Article
  • 6 Downloads

Abstract

In this study, high-efficiency inverted polymer solar cells were developed by using graphene oxide/poly(3,4-ethylene-dioxythiophene):poly(4-styrene-sulfonate) (GO/PEDOT:PSS) composites films acting as hole transport layer into the device structure based on Indium Tin Oxide (ITO)/Zinc Oxide (ZnO)/Poly(3-hexylthiophene):[6,6]phenyl-C61-butyric Acid Methyl Ester (P3HT:PCBM)/GO:PEDOT:PSS/Silver (Ag). The electrical conductivity and Seebeck coefficient of the films have been measured at room temperature and a maximum of conductivity achieved was for 492 S/cm for a 3 wt.% GO/PEDOT:PSS film treated with dimethyl sulfoxide as solvent and a decrease in the conductivity was observed for higher content of GO even after chemical or thermal reduction. The energy conversion efficiency was enhanced from 2.14% to 3.06% by incorporating 3 wt.% of GO into the PEDOT:PSS buffer layer. Thus, the 3 wt.% GO/PEDOT:PSS is a promising buffer layer for photovoltaic and electronic applications, since a decrease of the overall performance of the photovoltaic device was observed for higher concentration of GO.

Keywords

Graphene buffer layer electrical conductivity energy conversion efficiency organic photovoltaic device inverted polymer solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Park, C. Park, B. Kim, H. Shin, and E. Kim, Energy Environ. Sci. 6, 788 (2013).CrossRefGoogle Scholar
  2. 2.
    S. De, P.E. Lyons, S. Sorel, E.M. Doherty, P.J. King, W.J. Blau, P.N. Nirmalraj, J.J. Boland, V. Scardaci, and J. Joimel, ACS Nano 3, 714 (2009).CrossRefGoogle Scholar
  3. 3.
    E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.C. Greyson, Y. Cui, M.D. McGehee, and M.L. Brongersma, Nat. Mater. 11, 241 (2012).CrossRefGoogle Scholar
  4. 4.
    S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, ACS Nano 3, 1767 (2009).CrossRefGoogle Scholar
  5. 5.
    J.Y. Lee, S.T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 689 (2008).CrossRefGoogle Scholar
  6. 6.
    H. Wu, D. Kong, Z. Ruan, P.C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, Nat. Nanotechnol. 8, 421 (2013).CrossRefGoogle Scholar
  7. 7.
    H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, Adv. Funct. Mater. 20, 2893 (2010).CrossRefGoogle Scholar
  8. 8.
    Y.S. Hsiao, W.T. Whang, C.P. Chen, and Y.C. Chen, J. Mater. Chem. 18, 5948 (2008).CrossRefGoogle Scholar
  9. 9.
    O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).CrossRefGoogle Scholar
  10. 10.
    G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).CrossRefGoogle Scholar
  11. 11.
    B. Yin, Q. Liu, L. Yang, X. Wu, Z. Liu, Y. Hua, S. Yin, and Y. Chen, J. Nanosci. Nanotechnol. 10, 1934 (2010).CrossRefGoogle Scholar
  12. 12.
    T.R. Chou, S.H. Chen, Y.T. Chiang, Y.T. Lin, and C.Y. Chao, J. Mater. Chem. C 3, 3760 (2015).CrossRefGoogle Scholar
  13. 13.
    C. Yu, K. Choi, L. Yin, and J.C. Grunlan, ACS Nano 5, 7885 (2011).CrossRefGoogle Scholar
  14. 14.
    D. Yoo, J. Kim, and J.H. Kim, Nano Res. 7, 717 (2015).CrossRefGoogle Scholar
  15. 15.
    G.H. Kim, D.H. Hwang, and S.I. Woo, Phys. Chem. Chem. Phys. 14, 3530 (2012).CrossRefGoogle Scholar
  16. 16.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  17. 17.
    M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, Opt. Mater. 60, 105 (2016).CrossRefGoogle Scholar
  18. 18.
    J.M. Kroon, M.M. Wienk, W.J.H. Verhees, and J.C. Hummelen, Thin Solid Films 403/404, 223 (2002).CrossRefGoogle Scholar
  19. 19.
    R. Radbeh, E. Parbaile, J. Bouclé, C.D. Bin, A. Moliton, V. Coudert, F. Rossignol, and B. Ratier, Nanotechnology 21, 035201 (2010).CrossRefGoogle Scholar
  20. 20.
    F. Li, K. Cai, S. Shen, and S. Chen, Synth. Met. 197, 58 (2014).CrossRefGoogle Scholar
  21. 21.
    M. Goumri, C. Poilâne, P. Ruterana, B. Ben Doudou, J. Wéry, A. Bakour, and M. Baitoul, Chin. J. Phys. 55, 412 (2017).CrossRefGoogle Scholar
  22. 22.
    Y. Liu, B. Weng, J.M. Razal, Q. Xu, C. Zhao, Y. Hou, S. Seyedin, R. Jalili, G.G. Wallace, and J. Chen, Sci. Rep. 5, 17045 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Khenfouch, U. Buttner, M. Baïtoul, and M. Maaza, Graphene 3, 7 (2014).CrossRefGoogle Scholar
  24. 24.
    X. Zhang, D. Chang, J. Liu, and Y. Luo, J. Mater. Chem. 20, 5080 (2010).CrossRefGoogle Scholar
  25. 25.
    A. Osterholm, T. Lindfors, J. Kauppila, and P. Damlin, Electrochim. Acta 83, 463 (2012).CrossRefGoogle Scholar
  26. 26.
    C.Z. Meng, C.H. Liu, and S.S. Fan, Adv. Mater. 22, 535 (2010).CrossRefGoogle Scholar
  27. 27.
    S. Pei, J. Zhao, J. Du, W. Ren, and H.M. Cheng, Carbon 48, 4466 (2010).CrossRefGoogle Scholar
  28. 28.
    S. Timpanaro, M. Kemerink, F.J. Touwslager, M.M. De Kok, and S. Schrader, Chem. Phys. Lett. 394, 339 (2004).CrossRefGoogle Scholar
  29. 29.
    A.M. Nardes, M. Kemerink, R.A.J. Janssen, J.A.M. Bastiaansen, N.M.M. Kiggen, B.M.W. Langeveld, A.J.J.M. Van Breemen, and M.M. De Kok, Adv. Mater. 19, 1196 (2007).CrossRefGoogle Scholar
  30. 30.
    Y.H. Ha, N. Nikolov, S.K. Pollack, J. Mastrangelo, B.D. Martin, and R. Shashidhar, Adv. Funct. Mater. 14, 615 (2004).CrossRefGoogle Scholar
  31. 31.
    A.A. Dubinov, V.Y. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, J. Phys.: Condens. Matter 23, 1 (2011).Google Scholar
  32. 32.
    M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D.C. Bradley, and J. Nelson, Nat. Mater. 7, 158 (2008).CrossRefGoogle Scholar
  33. 33.
    A. Bakour, F. Geschier, M. Baitoul, M. Mbarek, K. El-Hadj, and J.W. Venturini, Mater. Chem. Phys. 143, 1102 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Group of Polymers and Nanomaterials, Laboratory of Solid State Physics, Faculty of Sciences Dhar El MahrazUniversity Sidi Mohammed Ben AbdellahFezMorocco
  2. 2.XLIM, UMR 7252Université de Limoges/CNRSLimoges CedexFrance

Personalised recommendations