Journal of Electronic Materials

, Volume 48, Issue 2, pp 1074–1078 | Cite as

MEH-PPV/CdS Hybrid Nanowire Polymer Solar Cell Array

  • Shweta ChaureEmail author


One-dimensional ordered hybrid pn-junction solar cell devices of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and cadmium sulphide (CdS) were fabricated. CdS nanowires were synthesized with alumina membrane by using potentiostatic electrodeposition. The CdS nanowire template was dissolved in sodium hydroxide to obtain the vertically aligned nanowires. The solar cell devices were characterized to study the optical, morphological and optoelectronic properties. The absorption curve revealed that the CdS nanowire and MEH-PPV have complementary absorption spectra leading to an increase in the absorption intensity for the composite system. The photoluminescence peaks of CdS nanowires were found to be quenched because of the overlapping between polymer absorption and CdS emission. The devices characterized under illumination condition at input intensity, 100 mW/cm2 showed short circuit current density, open circuit voltage, fill factor and power conversion efficiency ~ 16 mA/cm2, 660 mV, 50% and 3.9%, respectively.


CdS nanowire photoluminescence UV–visible solar cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to acknowledge the financial support received from Science and Engineering Research Board (SERB) by Extra Mural research Grant Ref. No. EMR/2016/007769.


  1. 1.
    S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic, M. Bawendi, and S. Gradečak, Nano Lett. 11, 3998 (2011).CrossRefGoogle Scholar
  2. 2.
    Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, and M. Krüger, Sol. Energy Mater. Sol. Cells 95, 1232 (2011).CrossRefGoogle Scholar
  3. 3.
    D. Celik, M. Krueger, C. Veit, H.F. Schleiermacher, B. Zimmermann, S. Allard, I. Dumsch, U. Scherf, F. Rauscher, and P. Niyamakom, Sol. Energy Mater. Sol. Cells 98, 433 (2012).CrossRefGoogle Scholar
  4. 4.
    F. Weidong, Y. Yao, N. Wei, C. Zou, G. Yin, Z. Huang, X. Liao, and X. Chen, Mater. Lett. 134, 107 (2014).CrossRefGoogle Scholar
  5. 5.
    L. Mingming, X. Wang, W. Cao, J. Yuan, and M. Cao, Nanotechnology 27, 065702 (2016).CrossRefGoogle Scholar
  6. 6.
    N.C. Nicolaidis, B.S. Routley, J.L. Holdsworth, W.J. Belcher, X. Zhou, and P.C. Dastoor, J. Phys. Chem. C 115, 7801 (2011).CrossRefGoogle Scholar
  7. 7.
    J. Huang, Z. Huang, Y. Yang, H. Zhu, and T. Lian, J. Am. Chem. Soc. 132, 4858 (2010).CrossRefGoogle Scholar
  8. 8.
    A. Guchhait, A.K. Rath, and A.K. Pal, Sol. Energy Mater. Sol. Cell 95, 651 (2011).CrossRefGoogle Scholar
  9. 9.
    L. Wang, D. Zhao, Z. Su, B. Li, Z. Zhang, and D. Shen, J. Electrochem. Soc. 158, H804 (2011).CrossRefGoogle Scholar
  10. 10.
    W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002).CrossRefGoogle Scholar
  11. 11.
    C.-W. Chen, C.-H. Chen, S.-C. Liou, H.-Y. Huang, and S. Wei-Fang, Nanotechnology 17, 5387 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Chaure, J. Mater. Sci.: Mater. Electron. 28, 2 (2016).Google Scholar
  13. 13.
    N.B. Chaure, S. Bordas, A.P. Samantilleke, S.N. Chaure, J. Haigh, and I.M. Dharmadasa, Thin Solid Films 437, 10 (2003).CrossRefGoogle Scholar
  14. 14.
    D. Kim, M. Miyamoto, T. Mishima, and M. Nakayama, J. Appl. Phys. 98, 083514 (2005).CrossRefGoogle Scholar
  15. 15.
    N.C. Greenham, X.G. Peng, and A.P. Alivisatos, Phys. Rev. B 54, 628 (1996).CrossRefGoogle Scholar
  16. 16.
    L. Wang, Y. Liu, X. Jiang, D. Qin, and Y. Cao, J. Phys. Chem. C 111, 9538 (2007).CrossRefGoogle Scholar
  17. 17.
    B.M. Kayes, H.A. Atwater, and N.S. Lewis, J. Appl. Phys. 97, 114302 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsCollege of EngineeringPuneIndia

Personalised recommendations