Advertisement

Journal of Electronic Materials

, Volume 47, Issue 3, pp 1757–1761 | Cite as

Interface-Dependent Effective Mobility in Graphene Field-Effect Transistors

  • Patrik Ahlberg
  • Malkolm Hinnemo
  • Shi-Li Zhang
  • Jörgen Olsson
Open Access
Article

Abstract

By pretreating the substrate of a graphene field-effect transistor (G-FET), a stable unipolar transfer characteristic, instead of the typical V-shape ambipolar behavior, has been demonstrated. This behavior is achieved through functionalization of the SiO2/Si substrate that changes the SiO2 surface from hydrophilic to hydrophobic, in combination with postdeposition of an Al2O3 film by atomic layer deposition (ALD). Consequently, the back-gated G-FET is found to have increased apparent hole mobility and suppressed apparent electron mobility. Furthermore, with addition of a top-gate electrode, the G-FET is in a double-gate configuration with independent top- or back-gate control. The observed difference in mobility is shown to also be dependent on the top-gate bias, with more pronounced effect at higher electric field. Thus, the combination of top and bottom gates allows control of the G-FET’s electron and hole mobilities, i.e., of the transfer behavior. Based on these observations, it is proposed that polar ligands are introduced during the ALD step and, depending on their polarization, result in an apparent increase of the effective hole mobility and an apparent suppressed effective electron mobility.

Keywords

Double-gate FETs graphene surface engineering ALD 

Notes

Acknowledgements

This work was partially financially supported by the Knut and Alice Wallenberg Foundation (No. 2011.0082) and the Swedish Research Council (2014-5591).

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666–669 (2004).CrossRefGoogle Scholar
  2. 2.
    J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, and M. Ishigami, Nat. Phys. 4, 377–381 (2008).CrossRefGoogle Scholar
  3. 3.
    F. Schwierz, Nat. Nano 5, 487–496 (2010).CrossRefGoogle Scholar
  4. 4.
    H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, ACS Nano 4, 7221–7228 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Min, S. Seo, J. Lee, S.M. Lee, E. Hwang, and H. Lee, Chem. Commun. 49, 6289–6291 (2013).CrossRefGoogle Scholar
  6. 6.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183–191 (2007).CrossRefGoogle Scholar
  7. 7.
    S.F. Chowdhury, L. Tao, S. Banerjee, D. Akinwande in Presented at the 14th IEEE International Conference on Nanotechnology, 2014 (unpublished).Google Scholar
  8. 8.
    P. Ahlberg, M. Hinnemo, M. Song, X. Gao, J. Olsson, S.-L. Zhang, and Z.-B. Zhang, Appl. Phys. Lett. 107, 203104 (2015).CrossRefGoogle Scholar
  9. 9.
    P. David and L. Haitao, 2D Mater. 2, 032001 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S.K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009).CrossRefGoogle Scholar
  11. 11.
    M. Hinnemo, P. Ahlberg, C. Hägglund, W. Ren, H.-M. Cheng, S.-L. Zhang, and Z.-B. Zhang, Carbon 98, 567–571 (2016).CrossRefGoogle Scholar
  12. 12.
    M.S. Fuhrer and J. Hone, Nat. Nano 8, 146–147 (2013).CrossRefGoogle Scholar
  13. 13.
    R. Kotipalli, R. Delamare, O. Poncelet, X. Tang, L.A. Francis, and D. Flandre, EPJ Photovolt. 4, 45107 (2013).CrossRefGoogle Scholar
  14. 14.
    G. Dingemans, M.C.M. van de Sanden, and W.M.M. Kessels, Electrochem. Solid-State Lett. 13, H76–H79 (2010).CrossRefGoogle Scholar
  15. 15.
    C.M. Aguirre, P.L. Levesque, M. Paillet, F. Lapointe, B.C. St-Antoine, P. Desjardins, and R. Martel, Adv. Mater. 21, 3087–3091 (2009).CrossRefGoogle Scholar
  16. 16.
    M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K.V. Klitzing, and J.H. Smet, Nano Lett. 10, 1149–1153 (2010).CrossRefGoogle Scholar
  17. 17.
    T. Fang, A. Konar, H. Xing, and D. Jena, Appl. Phys. Lett. 91, 092109 (2007).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Uppsala Universitet Teknisk-naturvetenskapliga fakultetenUppsalaSweden

Personalised recommendations